Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
CD109-GP130 interaction drives glioblastoma stem cell plasticity and chemoresistance through STAT3 activity
Pauliina Filppu, … , Vadim Le Joncour, Pirjo Laakkonen
Pauliina Filppu, … , Vadim Le Joncour, Pirjo Laakkonen
Published May 10, 2021
Citation Information: JCI Insight. 2021;6(9):e141486. https://doi.org/10.1172/jci.insight.141486.
View: Text | PDF
Research Article Oncology Stem cells

CD109-GP130 interaction drives glioblastoma stem cell plasticity and chemoresistance through STAT3 activity

  • Text
  • PDF
Abstract

Glioma stem cells (GSCs) drive propagation and therapeutic resistance of glioblastomas, the most aggressive diffuse brain tumors. However, the molecular mechanisms that maintain the stemness and promote therapy resistance remain poorly understood. Here we report CD109/STAT3 axis as crucial for the maintenance of stemness and tumorigenicity of GSCs and as a mediator of chemoresistance. Mechanistically, CD109 physically interacts with glycoprotein 130 to promote activation of the IL-6/STAT3 pathway in GSCs. Genetic depletion of CD109 abolished the stemness and self-renewal of GSCs and impaired tumorigenicity. Loss of stemness was accompanied with a phenotypic shift of GSCs to more differentiated astrocytic-like cells. Importantly, genetic or pharmacologic targeting of CD109/STAT3 axis sensitized the GSCs to chemotherapy, suggesting that targeting CD109/STAT3 axis has potential to overcome therapy resistance in glioblastoma.

Authors

Pauliina Filppu, Jayendrakishore Tanjore Ramanathan, Kirsi J. Granberg, Erika Gucciardo, Hannu Haapasalo, Kaisa Lehti, Matti Nykter, Vadim Le Joncour, Pirjo Laakkonen

×

Full Text PDF

Download PDF (15.62 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts