Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Role of defective calcium regulation in cardiorespiratory dysfunction in Huntington’s disease
Haikel Dridi, Xiaoping Liu, Qi Yuan, Steve Reiken, Mohamad Yehya, Leah Sittenfeld, Panagiota Apostolou, Julie Buron, Pierre Sicard, Stefan Matecki, Jérome Thireau, Clement Menuet, Alain Lacampagne, Andrew R. Marks
Haikel Dridi, Xiaoping Liu, Qi Yuan, Steve Reiken, Mohamad Yehya, Leah Sittenfeld, Panagiota Apostolou, Julie Buron, Pierre Sicard, Stefan Matecki, Jérome Thireau, Clement Menuet, Alain Lacampagne, Andrew R. Marks
View: Text | PDF
Research Article Cell biology Therapeutics

Role of defective calcium regulation in cardiorespiratory dysfunction in Huntington’s disease

  • Text
  • PDF
Abstract

Huntington’s disease (HD) is a progressive, autosomal dominant neurodegenerative disorder affecting striatal neurons beginning in young adults with loss of muscle coordination and cognitive decline. Less appreciated is the fact that patients with HD also exhibit cardiac and respiratory dysfunction, including pulmonary insufficiency and cardiac arrhythmias. The underlying mechanism for these symptoms is poorly understood. In the present study we provide insight into the cause of cardiorespiratory dysfunction in HD and identify a potentially novel therapeutic target. We now show that intracellular calcium (Ca2+) leak via posttranslationally modified ryanodine receptor/intracellular calcium release (RyR) channels plays an important role in HD pathology. RyR channels were oxidized, PKA phosphorylated, and leaky in brain, heart, and diaphragm both in patients with HD and in a murine model of HD (Q175). HD mice (Q175) with endoplasmic reticulum Ca2+ leak exhibited cognitive dysfunction, decreased parasympathetic tone associated with cardiac arrhythmias, and reduced diaphragmatic contractile function resulting in impaired respiratory function. Defects in cognitive, motor, and respiratory functions were ameliorated by treatment with a novel Rycal small-molecule drug (S107) that fixes leaky RyR. Thus, leaky RyRs likely play a role in neuronal, cardiac, and diaphragmatic pathophysiology in HD, and RyRs are a potential novel therapeutic target.

Authors

Haikel Dridi, Xiaoping Liu, Qi Yuan, Steve Reiken, Mohamad Yehya, Leah Sittenfeld, Panagiota Apostolou, Julie Buron, Pierre Sicard, Stefan Matecki, Jérome Thireau, Clement Menuet, Alain Lacampagne, Andrew R. Marks

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,118 139
PDF 97 24
Figure 254 11
Supplemental data 44 3
Citation downloads 88 0
Totals 1,601 177
Total Views 1,778
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts