Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

TLR2-mediated activation of innate responses in the upper airways confers antiviral protection of the lungs
Georgia Deliyannis, Chinn Yi Wong, Hayley A. McQuilten, Annabell Bachem, Michele Clarke, Xiaoxiao Jia, Kylie Horrocks, Weiguang Zeng, Jason Girkin, Nichollas E. Scott, Sarah L. Londrigan, Patrick C. Reading, Nathan W. Bartlett, Katherine Kedzierska, Lorena E. Brown, Francesca Mercuri, Christophe Demaison, David C. Jackson, Brendon Y. Chua
Georgia Deliyannis, Chinn Yi Wong, Hayley A. McQuilten, Annabell Bachem, Michele Clarke, Xiaoxiao Jia, Kylie Horrocks, Weiguang Zeng, Jason Girkin, Nichollas E. Scott, Sarah L. Londrigan, Patrick C. Reading, Nathan W. Bartlett, Katherine Kedzierska, Lorena E. Brown, Francesca Mercuri, Christophe Demaison, David C. Jackson, Brendon Y. Chua
View: Text | PDF
Research Article Infectious disease Therapeutics

TLR2-mediated activation of innate responses in the upper airways confers antiviral protection of the lungs

  • Text
  • PDF
Abstract

The impact of respiratory virus infections on global health is felt not just during a pandemic, but endemic seasonal infections pose an equal and ongoing risk of severe disease. Moreover, vaccines and antiviral drugs are not always effective or available for many respiratory viruses. We investigated how induction of effective and appropriate antigen-independent innate immunity in the upper airways can prevent the spread of respiratory virus infection to the vulnerable lower airways. Activation of TLR2, when restricted to the nasal turbinates, resulted in prompt induction of innate immune–driven antiviral responses through action of cytokines, chemokines, and cellular activity in the upper but not the lower airways. We have defined how nasal epithelial cells and recruitment of macrophages work in concert and play pivotal roles to limit progression of influenza virus to the lungs and sustain protection for up to 7 days. These results reveal underlying mechanisms of how control of viral infection in the upper airways can occur and support the implementation of strategies that can activate TLR2 in nasal passages to provide rapid protection, especially for at-risk populations, against severe respiratory infection when vaccines and antiviral drugs are not always effective or available.

Authors

Georgia Deliyannis, Chinn Yi Wong, Hayley A. McQuilten, Annabell Bachem, Michele Clarke, Xiaoxiao Jia, Kylie Horrocks, Weiguang Zeng, Jason Girkin, Nichollas E. Scott, Sarah L. Londrigan, Patrick C. Reading, Nathan W. Bartlett, Katherine Kedzierska, Lorena E. Brown, Francesca Mercuri, Christophe Demaison, David C. Jackson, Brendon Y. Chua

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 865 245
PDF 154 38
Figure 455 0
Supplemental data 47 3
Citation downloads 94 0
Totals 1,615 286
Total Views 1,901
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts