Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Toward a humanized mouse model of Pneumocystis pneumonia
Guixiang Dai, … , Paul Volden, Jay K. Kolls
Guixiang Dai, … , Paul Volden, Jay K. Kolls
Published January 25, 2021
Citation Information: JCI Insight. 2021;6(2):e139573. https://doi.org/10.1172/jci.insight.139573.
View: Text | PDF
Research Article Infectious disease Pulmonology

Toward a humanized mouse model of Pneumocystis pneumonia

  • Text
  • PDF
Abstract

Pneumocystis is an important opportunistic fungus that causes pneumonia in children and immunocompromised individuals. Recent genomic data show that divergence of major surface glycoproteins may confer speciation and host range selectivity. On the other hand, immune clearance between mice and humans is well correlated. Thus, we hypothesized that humanize mice may provide information about human immune responses involved in controlling Pneumocystis infection. CD34-engrafted huNOG-EXL mice controlled fungal burdens to a greater extent than nonengrafted mice. Moreover, engrafted mice generated fungal-specific IgM. Fungal control was associated with a transcriptional signature that was enriched for genes associated with nonopsonic recognition of trophs (CD209) and asci (CLEC7A). These same genes were downregulated in CD4-deficient mice as well as twins with bare lymphocyte syndrome with Pneumocystis pneumonia.

Authors

Guixiang Dai, Alanna Wanek, Taylor Eddens, Paul Volden, Jay K. Kolls

×

Full Text PDF | Download (1.29 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts