Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Developmental changes in myocardial B cells mirror changes in B cells associated with different organs
Cibele Rocha-Resende, … , Luigi Adamo, Douglas L. Mann
Cibele Rocha-Resende, … , Luigi Adamo, Douglas L. Mann
Published July 14, 2020
Citation Information: JCI Insight. 2020;5(16):e139377. https://doi.org/10.1172/jci.insight.139377.
View: Text | PDF
Research Article Cardiology Immunology

Developmental changes in myocardial B cells mirror changes in B cells associated with different organs

  • Text
  • PDF
Abstract

The naive heart harbors a population of intravascular B cells that make close contact with the cardiac microvasculature. However, the timing of their appearance and their organ specificity remain unknown. To address this knowledge gap, we performed a systematic analysis of B cells isolated from the myocardium and other organs, from embryonic life to adulthood. We found that the phenotype of myocardial B cells changed dynamically during development. While neonatal heart B cells were mostly CD11b+ and CD11b– CD21–CD23–, adult B cells were predominantly CD11b–CD21+CD23+. Histological analysis and intravital microscopy of lung and liver showed that organ-associated B cells in contact with the microvascular endothelium were not specific to the heart. Flow cytometric analysis of perfused hearts, livers, lungs, and spleen showed that the dynamic changes in B cell subpopulations observed in the heart during development mirrored changes observed in the other organs. Single cell RNA sequencing (scRNAseq) analysis of B cells showed that myocardial B cells were part of a larger population of organ-associated B cells that had a distinct transcriptional profile. These findings broaden our understanding of the biology of myocardial-associated B cells and suggest that current models of the dynamics of naive B cells during development are incomplete.

Authors

Cibele Rocha-Resende, Wei Yang, Wenjun Li, Daniel Kreisel, Luigi Adamo, Douglas L. Mann

×

Full Text PDF | Download (2.67 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts