Animal studies indicate that hypothalamic dysfunction plays a major role in type 2 diabetes mellitus (T2DM) development, and that insulin resistance and inflammation are important mechanisms involved in this disorder. However, it remains unclear how T2DM and antidiabetic treatments affect the human hypothalamus. Here, we characterized the proopiomelanocortin (POMC) immunoreactive (-ir) neurons, the neuropeptide-Y–ir (NPY-ir) neurons, the ionized calcium-binding adapter molecule 1–ir (iba1-ir) microglia, and the transmembrane protein 119–ir (TMEM119-ir) microglia in the infundibular nucleus (IFN) of human postmortem hypothalamus of 32 T2DM subjects with different antidiabetic treatments and 17 matched nondiabetic control subjects. Compared with matched control subjects, T2DM subjects showed a decrease in the number of POMC-ir neurons, but no changes in NPY-ir neurons or microglia. Interestingly, T2DM subjects treated with the antidiabetic drug metformin had fewer NPY-ir neurons and microglia than T2DM subjects not treated with metformin. We found that the number of microglia correlated with the number of NPY-ir neurons, but only in T2DM subjects. These results indicate that different changes in POMC and NPY neurons and microglial cells in the IFN accompany T2DM. In addition, T2DM treatment modality is associated with highly selective changes in hypothalamic neurons and microglial cells.
Martin J.T. Kalsbeek, Samantha E.C. Wolff, Nikita L. Korpel, Susanne E. la Fleur, Johannes A. Romijn, Eric Fliers, Andries Kalsbeek, Dick F. Swaab, Inge Huitinga, Elly M. Hol, Chun-Xia Yi
Mutations in PKD1 (encoding for polycystin-1 [PC1]) are found in 80%–85% of patients with autosomal dominant polycystic kidney disease (ADPKD). We tested the hypothesis that changes in actin dynamics result from PKD1 mutations through dysregulation of compartmentalized centrosomal RhoA signaling mediated by specific RhoGAP (ARHGAP) proteins resulting in the complex cellular cystic phenotype. Initial studies revealed that the actin cytoskeleton was highly disorganized in cystic cells derived from patients with PKD1 and was associated with an increase in total and centrosomal active RhoA and ROCK signaling. Using cilia length as a phenotypic readout for centrosomal RhoA activity, we identified ARHGAP5, -29, and -35 as essential regulators of ciliation in normal human renal tubular cells. Importantly, a specific decrease in centrosomal ARHGAP35 was observed in PKD1-null cells using a centrosome-targeted proximity ligation assay and by dual immunofluorescence labeling. Finally, the ROCK inhibitor hydroxyfasudil reduced cyst expansion in both human PKD1 3D cyst assays and an inducible Pkd1 mouse model. In summary, we report a potentially novel interaction between PC1 and ARHGAP35 in the regulation of centrosomal RhoA activation and ROCK signaling. Targeting the RhoA/ROCK pathway inhibited cyst formation in vitro and in vivo, indicating its relevance to ADPKD pathogenesis and for developing new therapies to inhibit cyst initiation.
Andrew J. Streets, Philipp P. Prosseda, Albert C.M. Ong
Evidence has mounted that insulin can be synthesized in various brain regions, including the hypothalamus. However, the distribution and functions of insulin-expressing cells in the hypothalamus remain elusive. Herein, we show that in the mouse hypothalamus, the perikarya of insulin-positive neurons are located in the paraventricular nucleus (PVN) and their axons project to the median eminence; these findings define parvocellular neurosecretory PVN insulin neurons. Contrary to corticotropin-releasing hormone expression, insulin expression in the PVN was inhibited by restraint stress (RS) in both adult and young mice. Acute RS–induced inhibition of PVN insulin expression in adult mice decreased both pituitary growth hormone (Gh) mRNA level and serum GH concentration, which were attenuated by overexpression of PVN insulin. Notably, PVN insulin knockdown or chronic RS in young mice hindered normal growth via the downregulation of GH gene expression and secretion, whereas PVN insulin overexpression in young mice prevented chronic RS–induced growth retardation by elevating GH production. Our results suggest that in both normal and stressful conditions, insulin synthesized in the parvocellular PVN neurons plays an important role in the regulation of pituitary GH production and body length, unveiling a physiological function of brain-derived insulin.
Jaemeun Lee, Kyungchan Kim, Jae Hyun Cho, Jin Young Bae, Timothy P. O’Leary, James D. Johnson, Yong Chul Bae, Eun-Kyoung Kim
The regulatory mechanisms enabling the intestinal epithelium to maintain a high degree of regenerative capacity during mucosal injury remain unclear. Ex vivo survival and clonogenicity of intestinal stem cells (ISCs) strictly required growth response mediated by cell division control 42 (Cdc42) and Cdc42-deficient enteroids to undergo rapid apoptosis. Mechanistically, Cdc42 engaging with EGFR was required for EGF-stimulated, receptor-mediated endocytosis and sufficient to promote MAPK signaling. Proteomics and kinase analysis revealed that a physiologically, but nonconventionally, spliced Cdc42 variant 2 (V2) exhibited stronger MAPK-activating capability. Human CDC42-V2 is transcriptionally elevated in some colon tumor tissues. Accordingly, mice engineered to overexpress Cdc42-V2 in intestinal epithelium showed elevated MAPK signaling, enhanced regeneration, and reduced mucosal damage in response to irradiation. Overproducing Cdc42-V2 specifically in mouse ISCs enhanced intestinal regeneration following injury. Thus, the intrinsic Cdc42-MAPK program is required for intestinal epithelial regeneration, and elevating this signaling cascade is capable of initiating protection from genotoxic injury.
Xiao Zhang, Sheila Bandyopadhyay, Leandro Pires Araujo, Kevin Tong, Juan Flores, Daniel Laubitz, Yanlin Zhao, George Yap, Jingren Wang, Qingze Zou, Ronaldo Ferraris, Lanjing Zhang, Wenwei Hu, Edward M. Bonder, Pawel R. Kiela, Robert Coffey, Michael P. Verzi, Ivaylo I. Ivanov, Nan Gao
Chronic inflammation is associated with physical frailty and functional decline in older adults; however, the molecular mechanisms of this linkage are not understood. A mouse model of chronic inflammation showed reduced motor function and partial denervation at the neuromuscular junction. Metabolomic profiling of these mice and further validation in frail human subjects showed significant dysregulation in the tryptophan degradation pathway, including decreased tryptophan and serotonin, and increased levels of some neurotoxic kynurenines. In humans, kynurenine strongly correlated with age, frailty status, TNF-αR1 and IL-6, weaker grip strength, and slower walking speed. To study the effects of elevated neurotoxic kynurenines on motor neuronal cell viability and axonal degeneration, we used motor neuronal cells treated with 3-hydroxykynurenine and quinolinic acid and observed neurite degeneration in a dose-dependent manner and potentiation of toxicity between 3-hydroxykynurenine and quinolinic acid. These results suggest that kynurenines mediate neuromuscular dysfunction associated with chronic inflammation and aging.
Reyhan Westbrook, Tae Chung, Jacqueline Lovett, Chris Ward, Humberto Joca, Huanle Yang, Mohammed Khadeer, Jing Tian, Qian-Li Xue, Anne Le, Luigi Ferrucci, Ruin Moaddel, Rafa de Cabo, Ahmet Hoke, Jeremy Walston, Peter M. Abadir
Neurofibromatosis type 1 (NF1) is a rare genetic disorder, characterized by the development of benign and malignant nerve tumors. Although all individuals with NF1 harbor genetic alterations in the same gene, the clinical manifestations of NF1 are extremely heterogeneous even among individuals who carry identical genetic defects. In order to deepen the understanding of phenotypic manifestations in NF1, we comprehensively characterized the prevalence of 18 phenotypic traits in 2051 adults with NF1 from the Children’s Tumor Foundation’s NF1 registry. We further investigated the coassociation of traits and found positive correlations between spinal neurofibromas and pain, spinal neurofibromas and scoliosis, spinal neurofibromas and optic gliomas, and optic gliomas and sphenoid wing dysplasia. Furthermore, with increasing numbers of cutaneous neurofibromas, the odds ratio of malignant peripheral nerve sheath tumor increased. Phenotypic clustering revealed 6 phenotypic patient cluster subtypes: mild, freckling predominant, neurofibroma predominant, skeletal predominant, late-onset neural severe, and early-onset neural severe, highlighting potential phenotypic subtypes within NF1. Together, our results support potential shared molecular pathogenesis for certain clinical manifestations and illustrate the utility of disease registries for understanding rare diseases.
Mika M. Tabata, Shufeng Li, Pamela Knight, Annette Bakker, Kavita Y. Sarin
Granulosa cell tumors (GCT) are rare ovarian malignancies. Due to the lack of effective treatment in late relapse, there is a clear unmet need for novel therapies. Forkhead Box L2 (FOXL2) is a protein mainly expressed in granulosa cells (GC) and therefore is a rational therapeutic target. Since we identified tumor infiltrating lymphocytes (TILs) as the main immune population within GCT, TILs from 11 GCT patients were expanded, and their phenotypes were interrogated to determine that T cells acquired late antigen-experienced phenotypes and lower levels of PD1 expression. Importantly, TILs maintained their functionality after ex vivo expansion as they vigorously reacted against autologous tumors (100% of patients) and against FOXL2 peptides (57.1% of patients). To validate the relevance of FOXL2 as a target for immune therapy, we developed a plasmid DNA vaccine (FoxL2–tetanus toxin; FoxL2-TT) by fusing Foxl2 cDNA with the immune-enhancing domain of TT. Mice immunization with FoxL2-TT controlled growth of FOXL2-expressing ovarian (BR5) and breast (4T1) cancers in a T cell–mediated manner. Combination of anti–PD-L1 with FoxL2-TT vaccination further reduced tumor progression and improved mouse survival without affecting the female reproductive system and pregnancy. Together, our results suggest that FOXL2 immune targeting can produce substantial long-term clinical benefits. Our study can serve as a foundation for trials testing immunotherapeutic approaches in patients with ovarian GCT.
Stefano Pierini, Janos L. Tanyi, Fiona Simpkins, Erin George, Mireia Uribe-Herranz, Ronny Drapkin, Robert Burger, Mark A. Morgan, Andrea Facciabene
BACKGROUND Metabolically healthy obesity (MHO) and metabolically healthy overweight (MH-OW) have been suggested to be important and emerging phenotypes with an increased risk of cardiovascular disease (CVD). However, whether MHO and MH-OW are associated with all-cause mortality remains inconsistent.METHODS The association of MHO and MH-OW and all-cause mortality was determined in a Chinese community-based prospective cohort study (the Kailuan study), including 93,272 adults at baseline. Data were analyzed from 2006 to 2017. Participants were categorized into 6 mutually exclusive groups, according to BMI and metabolic syndrome (MetS) status. The primary outcome was all-cause death, and accidental deaths were excluded.RESULTS During a median follow-up of 11.04 years (interquartile range, 10.74–11.22 years), 8977 deaths occurred. Compared with healthy participants with normal BMI (MH-NW), MH-OW participants had the lowest risk of all-cause mortality (multivariate-adjusted HR [aHR], 0.926; 95% CI, 0.861–0.997), whereas there was no increased or decreased risk for MHO (aHR, 1.009; 95% CI, 0.886–1.148). Stratified analyses and sensitivity analyses further validated that there was a nonsignificant association between MHO and all-cause mortality.CONCLUSIONS Overweight and obesity do not predict increased risk of all-cause mortality in metabolic healthy Chinese individuals.FUNDING National Natural Science Foundation of China (NSFC; 81673247, 81872682 and 81773527), the NSFC Joint Project, and the Australian National Health and Medical Research Council (NHMRC; NSFC 81561128020-NHMRC APP1112767).
Qiuyue Tian, Anxin Wang, Yingting Zuo, Shuohua Chen, Haifeng Hou, Wei Wang, Shouling Wu, Youxin Wang
Aromatase inhibitors (AIs) reduce breast cancer recurrence and prolong survival, but up to 30% of patients exhibit recurrence. Using a genome-wide association study of patients entered on MA.27, a phase III randomized trial of anastrozole versus exemestane, we identified a single nucleotide polymorphism (SNP) in CUB And Sushi multiple domains 1 (CSMD1) associated with breast cancer–free interval, with the variant allele associated with fewer distant recurrences. Mechanistically, CSMD1 regulates CYP19 expression in an SNP- and drug-dependent fashion, and this regulation is different among 3 AIs: anastrozole, exemestane, and letrozole. Overexpression of CSMD1 sensitized AI-resistant cells to anastrozole but not to the other 2 AIs. The SNP in CSMD1 that was associated with increased CSMD1 and CYP19 expression levels increased anastrozole sensitivity, but not letrozole or exemestane sensitivity. Anastrozole degrades estrogen receptor α (ERα), especially in the presence of estradiol (E2). ER+ breast cancer organoids and AI- or fulvestrant-resistant breast cancer cells were more sensitive to anastrozole plus E2 than to AI alone. Our findings suggest that the CSMD1 SNP might help to predict AI response, and anastrozole plus E2 serves as a potential new therapeutic strategy for patients with AI- or fulvestrant-resistant breast cancers.
Junmei Cairns, James N. Ingle, Tanda M. Dudenkov, Krishna R. Kalari, Erin E. Carlson, Jie Na, Aman U. Buzdar, Mark E. Robson, Matthew J. Ellis, Paul E. Goss, Lois E. Shepherd, Barbara Goodnature, Matthew P. Goetz, Richard M. Weinshilboum, Hu Li, Mehrab Ghanat Bari, Liewei Wang
Histone deacetylase (HDAC) enzymes regulate transcription through epigenetic modification of chromatin structure, but their specific functions in the kidney remain elusive. We discovered that the human kidney expresses class I HDACs. Kidney medulla-specific inhibition of class I HDACs in the rat during high-salt feeding results in hypertension, polyuria, hypokalemia, and nitric oxide deficiency. Three new inducible murine models were used to determine that HDAC1 and HDAC2 in the kidney epithelium are necessary for maintaining epithelial integrity and maintaining fluid-electrolyte balance during increased dietary sodium intake. Moreover, single-nucleus RNA-sequencing determined that epithelial HDAC1 and HDAC2 are necessary for expression of many sodium or water transporters and channels. In performing a systematic review and meta-analysis of serious adverse events associated with clinical HDAC inhibitor use, we found that HDAC inhibitors increased the odds ratio of experiencing fluid-electrolyte disorders, such as hypokalemia. This study provides insight on the mechanisms of potential serious adverse events with HDAC inhibitors, which may be fatal to critically ill patients. In conclusion, kidney tubular HDACs provide a link between the environment, such as consumption of high-salt diets, and regulation of homeostatic mechanisms to remain in fluid-electrolyte balance.
Kelly A. Hyndman, Joshua S. Speed, Luciano D. Mendoza, John M. Allan, Jackson Colson, Randee Sedaka, Chunhua Jin, Hyun Jun Jung, Samir El-Dahr, David M. Pollock, Jennifer S. Pollock
Type 1 diabetes (T1D) is a consequence of autoimmune β cell destruction, but the role of lipids in this process is unknown. We previously reported that activation of Ca2+-independent phospholipase A2β (iPLA2β) modulates polarization of macrophages (MΦ). Hydrolysis of the sn-2 substituent of glycerophospholipids by iPLA2β can lead to the generation of oxidized lipids (eicosanoids), pro- and antiinflammatory, which can initiate and amplify immune responses triggering β cell death. As MΦ are early triggers of immune responses in islets, we examined the impact of iPLA2β-derived lipids (iDLs) in spontaneous-T1D prone nonobese diabetic mice (NOD), in the context of MΦ production and plasma abundances of eicosanoids and sphingolipids. We find that (a) MΦNOD exhibit a proinflammatory lipid landscape during the prediabetic phase; (b) early inhibition or genetic reduction of iPLA2β reduces production of select proinflammatory lipids, promotes antiinflammatory MΦ phenotype, and reduces T1D incidence; (c) such lipid changes are reflected in NOD plasma during the prediabetic phase and at T1D onset; and (d) importantly, similar lipid signatures are evidenced in plasma of human subjects at high risk for developing T1D. These findings suggest that iDLs contribute to T1D onset and identify select lipids that could be targeted for therapeutics and, in conjunction with autoantibodies, serve as early biomarkers of pre-T1D.
Alexander J. Nelson, Daniel J. Stephenson, Robert N. Bone, Christopher L. Cardona, Margaret A. Park, Ying G. Tusing, Xiaoyong Lei, George Kokotos, Christina L. Graves, Clayton E. Mathews, Joanna Kramer, Martin J. Hessner, Charles E. Chalfant, Sasanka Ramanadham
Clostridioides difficile is a leading cause of nosocomial infection responsible for significant morbidity and mortality with limited options for therapy. Secreted C. difficile toxin B (TcdB) is a major contributor to disease pathology, and select TcdB-specific Abs may protect against disease recurrence. However, the high frequency of recurrence suggests that the memory B cell response, essential for new Ab production following C. difficile reexposure, is insufficient. We therefore isolated TcdB-specific memory B cells from individuals with a history of C. difficile infection and performed single-cell deep sequencing of their Ab genes. Herein, we report that TcdB-specific memory B cell–encoded antibodies showed somatic hypermutation but displayed limited isotype class switch. Memory B cell–encoded mAb generated from the gene sequences revealed low to moderate affinity for TcdB and a limited ability to neutralize TcdB. These findings indicate that memory B cells are an important factor in C. difficile disease recurrence.
Hemangi B. Shah, Kenneth Smith, Edgar J. Scott II, Jason L. Larabee, Judith A. James, Jimmy D. Ballard, Mark L. Lang
In recent years, a number of drugs have been approved for the treatment of cystic fibrosis (CF). Among them, newly released Trikafta, a combination of 3 drugs (VX-661/VX-445/VX-770), holds great promise to radically improve the quality of life for a large portion of patients with CF carrying 1 copy of F508del, the most frequent CF transmembrane conductance regulator (CFTR) mutation. Currently available disease-modifying CF drugs work by rescuing the function of the mutated CFTR anion channel. Recent research has shown that membrane lipids, and the cell lipidome in general, play a significant role in the mechanism of CFTR-defective trafficking and, on the other hand, its rescue. In this paper, by using untargeted lipidomics on CFBE41o- cells, we identified distinctive changes in the bronchial epithelial cell lipidome associated with treatment with Trikafta and other CF drugs. Particularly interesting was the reduction of levels of ceramide, a known molecular player in the induction of apoptosis, which appeared to be associated with a decrease in the susceptibility of cells to undergo apoptosis. This evidence could account for additional beneficial roles of the triple combination of drugs on CF phenotypes.
Nara Liessi, Emanuela Pesce, Clarissa Braccia, Sine Mandrup Bertozzi, Alessandro Giraudo, Tiziano Bandiera, Nicoletta Pedemonte, Andrea Armirotti
Metabolic reprogramming dictates the fate and function of stimulated T cells, yet these pathways can be suppressed in T cells in tumor microenvironments. We previously showed that glycolytic and mitochondrial adaptations directly contribute to reducing the effector function of renal cell carcinoma (RCC) CD8+ tumor-infiltrating lymphocytes (TILs). Here we define the role of these metabolic pathways in the activation and effector functions of CD8+ RCC TILs. CD28 costimulation plays a key role in augmenting T cell activation and metabolism, and is antagonized by the inhibitory and checkpoint immunotherapy receptors CTLA4 and PD-1. While RCC CD8+ TILs were activated at a low level when stimulated through the T cell receptor alone, addition of CD28 costimulation greatly enhanced activation, function, and proliferation. CD28 costimulation reprogrammed RCC CD8+ TIL metabolism with increased glycolysis and mitochondrial oxidative metabolism, possibly through upregulation of GLUT3. Mitochondria also fused to a greater degree, with higher membrane potential and overall mass. These phenotypes were dependent on glucose metabolism, as the glycolytic inhibitor 2-deoxyglucose both prevented changes to mitochondria and suppressed RCC CD8+ TIL activation and function. These data show that CD28 costimulation can restore RCC CD8+ TIL metabolism and function through rescue of T cell glycolysis that supports mitochondrial mass and activity.
Kathryn E. Beckermann, Rachel Hongo, Xiang Ye, Kirsten Young, Katie Carbonell, Diana C. Contreras Healey, Peter J. Siska, Sierra Barone, Caroline E. Roe, Christof C. Smith, Benjamin G. Vincent, Frank M. Mason, Jonathan M. Irish, W. Kimryn Rathmell, Jeffrey C. Rathmell
Nexilin (NEXN) was recently identified as a component of the junctional membrane complex required for development and maintenance of cardiac T-tubules. Loss of Nexn in mice leads to a rapidly progressive dilated cardiomyopathy (DCM) and premature death. A 3 bp deletion (1948–1950del) leading to loss of the glycine in position 650 (G650del) is classified as a variant of uncertain significance in humans and may function as an intermediate risk allele. To determine the effect of the G650del variant on cardiac structure and function, we generated a G645del-knockin (G645del is equivalent to human G650del) mouse model. Homozygous G645del mice express about 30% of the Nexn expressed by WT controls and exhibited a progressive DCM characterized by reduced T-tubule formation, with disorganization of the transverse-axial tubular system. On the other hand, heterozygous Nexn global KO mice and genetically engineered mice encoding a truncated Nexn missing the first N-terminal actin-binding domain exhibited normal cardiac function, despite expressing only 50% and 20% of the Nexn, respectively, expressed by WT controls, suggesting that not only quantity but also quality of Nexn is necessary for a proper function. These findings demonstrated that Nexn G645 is crucial for Nexn’s function in tubular system organization and normal cardiac function.
Canzhao Liu, Simone Spinozzi, Wei Feng, Ze’e Chen, Lunfeng Zhang, Siting Zhu, Tongbin Wu, Xi Fang, Kunfu Ouyang, Sylvia M. Evans, Ju Chen
BACKGROUND Genomic and experimental studies suggest a role for PITX2 in atrial fibrillation (AF). To assess if this association is relevant for recurrent AF in patients, we tested whether left atrial PITX2 affects recurrent AF after AF ablation.METHODS mRNA concentrations of PITX2 and its cardiac isoform, PITX2c, were quantified in left atrial appendages (LAAs) from patients undergoing thoracoscopic AF ablation, either in whole LAA tissue (n = 83) or in LAA cardiomyocytes (n = 52), and combined with clinical parameters to predict AF recurrence. Literature suggests that BMP10 is a PITX2-repressed, atrial-specific, secreted protein. BMP10 plasma concentrations were combined with 11 cardiovascular biomarkers and clinical parameters to predict recurrent AF after catheter ablation in 359 patients.RESULTS Reduced concentrations of cardiomyocyte PITX2, but not whole LAA tissue PITX2, were associated with AF recurrence after thoracoscopic AF ablation (16% decreased recurrence per 2–(ΔΔCt) increase in PITX2). RNA sequencing, quantitative PCR, and Western blotting confirmed that BMP10 is one of the most PITX2-repressed atrial genes. Left atrial size (HR per mm increase [95% CI], 1.055 [1.028, 1.082]); nonparoxysmal AF (HR 1.672 [1.206, 2.318]), and elevated BMP10 (HR 1.339 [CI 1.159, 1.546] per quartile increase) were predictive of recurrent AF. BMP10 outperformed 11 other cardiovascular biomarkers in predicting recurrent AF.CONCLUSIONS Reduced left atrial cardiomyocyte PITX2 and elevated plasma concentrations of the PITX2-repressed, secreted atrial protein BMP10 identify patients at risk of recurrent AF after ablation.TRIAL REGISTRATION ClinicalTrials.gov NCT01091389, NL50069.018.14, Dutch National Registry of Clinical Research Projects EK494-16.FUNDING British Heart Foundation, European Union (H2020), Leducq Foundation.
Jasmeet S. Reyat, Winnie Chua, Victor R. Cardoso, Anika Witten, Peter M. Kastner, S. Nashitha Kabir, Moritz F. Sinner, Robin Wesselink, Andrew P. Holmes, Davor Pavlovic, Monika Stoll, Stefan Kääb, Georgios V. Gkoutos, Joris R. de Groot, Paulus Kirchhof, Larissa Fabritz
The naive heart harbors a population of intravascular B cells that make close contact with the cardiac microvasculature. However, the timing of their appearance and their organ specificity remain unknown. To address this knowledge gap, we performed a systematic analysis of B cells isolated from the myocardium and other organs, from embryonic life to adulthood. We found that the phenotype of myocardial B cells changed dynamically during development. While neonatal heart B cells were mostly CD11b+ and CD11b– CD21–CD23–, adult B cells were predominantly CD11b–CD21+CD23+. Histological analysis and intravital microscopy of lung and liver showed that organ-associated B cells in contact with the microvascular endothelium were not specific to the heart. Flow cytometric analysis of perfused hearts, livers, lungs, and spleen showed that the dynamic changes in B cell subpopulations observed in the heart during development mirrored changes observed in the other organs. Single cell RNA sequencing (scRNAseq) analysis of B cells showed that myocardial B cells were part of a larger population of organ-associated B cells that had a distinct transcriptional profile. These findings broaden our understanding of the biology of myocardial-associated B cells and suggest that current models of the dynamics of naive B cells during development are incomplete.
Cibele Rocha-Resende, Wei Yang, Wenjun Li, Daniel Kreisel, Luigi Adamo, Douglas L. Mann
Recently, we demonstrated that hematopoietic stem/progenitor cell (HSPC) mobilization followed by intravenous injection of integrating, helper-dependent adenovirus HDAd5/35++ vectors resulted in efficient transduction of long-term repopulating cells and disease amelioration in mouse models after in vivo selection of transduced HSPCs. Acute innate toxicity associated with HDAd5/35++ injection was controlled by appropriate prophylaxis, making this approach feasible for clinical translation. Our ultimate goal is to use this technically simple in vivo HSPC transduction approach for gene therapy of thalassemia major or sickle cell disease. A cure of these diseases requires high expression levels of the therapeutic protein (γ- or β-globin), which is difficult to achieve with lentivirus vectors because of their genome size limitation not allowing larger regulatory elements to be accommodated. Here, we capitalized on the 35 kb insert capacity of HDAd5/35++ vectors to demonstrate that transcriptional regulatory regions of the β-globin locus with a total length of 29 kb can efficiently be transferred into HSPCs. The in vivo HSPC transduction resulted in stable γ-globin levels in erythroid cells that conferred a complete cure of murine thalassemia intermedia. Notably, this was achieved with a minimal in vivo HSPC selection regimen.
Hongjie Wang, Aphrodite Georgakopoulou, Chang Li, Zhinan Liu, Sucheol Gil, Ashvin Bashyam, Evangelia Yannaki, Achilles Anagnostopoulos, Amit Pande, Zsuzsanna Izsvák, Thalia Papayannopoulou, André Lieber
Skin lesions in dermatomyositis (DM) are common, are frequently refractory, and have prognostic significance. Histologically, DM lesions appear similar to cutaneous lupus erythematosus (CLE) lesions and frequently cannot be differentiated. We thus compared the transcriptional profile of DM biopsies with CLE lesions to identify unique features. Type I IFN signaling, including IFN-κ upregulation, was a common pathway in both DM and CLE; however, CLE also exhibited other inflammatory pathways. Notably, DM lesions could be distinguished from CLE by a 5-gene biomarker panel that included IL18 upregulation. Using single-cell RNA-sequencing, we further identified keratinocytes as the main source of increased IL-18 in DM skin. This study identifies a potentially novel molecular signature, with significant clinical implications for differentiating DM from CLE lesions, and highlights the potential role for IL-18 in the pathophysiology of DM skin disease.
Lam C. Tsoi, Mehrnaz Gharaee-Kermani, Celine C. Berthier, Tori Nault, Grace A. Hile, Shannon N. Estadt, Matthew T. Patrick, Rachael Wasikowski, Allison C. Billi, Lori Lowe, Tamra J. Reed, Johann E. Gudjonsson, J. Michelle Kahlenberg
Airway mucociliary clearance (MCC) is the main mechanism of lung defense keeping airways free of infection and mucus obstruction. Airway surface liquid volume, ciliary beating, and mucus are central for proper MCC and critically regulated by sodium absorption and anion secretion. Impaired MCC is a key feature of muco-obstructive diseases. The calcium-activated potassium channel KCa.3.1, encoded by Kcnn4, participates in ion secretion, and studies showed that its activation increases Na+ absorption in airway epithelia, suggesting that KCa3.1-induced hyperpolarization was sufficient to drive Na+ absorption. However, its role in airway epithelium is not fully understood. We aimed to elucidate the role of KCa3.1 in MCC using a genetically engineered mouse. KCa3.1 inhibition reduced Na+ absorption in mouse and human airway epithelium. Furthermore, the genetic deletion of Kcnn4 enhanced cilia beating frequency and MCC ex vivo and in vivo. Kcnn4 silencing in the Scnn1b-transgenic mouse (Scnn1btg/+), a model of muco-obstructive lung disease triggered by increased epithelial Na+ absorption, improved MCC, reduced Na+ absorption, and did not change the amount of mucus but did reduce mucus adhesion, neutrophil infiltration, and emphysema. Our data support that KCa3.1 inhibition attenuated muco-obstructive disease in the Scnn1btg/+ mice. K+ channel modulation may be a therapeutic strategy to treat muco-obstructive lung diseases.
Génesis Vega, Anita Guequén, Amber R. Philp, Ambra Gianotti, Llilian Arzola, Manuel Villalón, Olga Zegarra-Moran, Luis J.V. Galietta, Marcus A. Mall, Carlos A. Flores
Nonalcoholic fatty liver disease (NAFLD) is a common comorbidity among people living with HIV that has a more aggressive course than NAFLD among the general population. In a recent randomized placebo-controlled trial, we demonstrated that the growth hormone–releasing hormone analog tesamorelin reduced liver fat and prevented fibrosis progression in HIV-associated NAFLD over 1 year. As such, tesamorelin is the first strategy that has shown to be effective against NAFLD among the population with HIV. The current study leveraged paired liver biopsy specimens from this trial to identify hepatic gene pathways that are differentially modulated by tesamorelin versus placebo. Using gene set enrichment analysis, we found that tesamorelin increased hepatic expression of hallmark gene sets involved in oxidative phosphorylation and decreased hepatic expression of gene sets contributing to inflammation, tissue repair, and cell division. Tesamorelin also reciprocally up- and downregulated curated gene sets associated with favorable and poor hepatocellular carcinoma prognosis, respectively. Notably, among tesamorelin-treated participants, these changes in hepatic expression correlated with improved fibrosis-related gene score. Our findings inform our knowledge of the biology of pulsatile growth hormone action and provide a mechanistic basis for the observed clinical effects of tesamorelin on the liver.
Lindsay T. Fourman, James M. Billingsley, George Agyapong, Shannan J. Ho Sui, Meghan N. Feldpausch, Julia Purdy, Isabel Zheng, Chelsea S. Pan, Kathleen E. Corey, Martin Torriani, David E. Kleiner, Colleen M. Hadigan, Takara L. Stanley, Raymond T. Chung, Steven K. Grinspoon
Current management of childhood leukemia is tailored based on disease risk determined by clinical features at presentation. Whether properties of the host immune response impact disease risk and outcome is not known. Here, we combine mass cytometry, single cell genomics, and functional studies to characterize the BM immune environment in children with B cell acute lymphoblastic leukemia and acute myelogenous leukemia at presentation. T cells in leukemia marrow demonstrate evidence of chronic immune activation and exhaustion/dysfunction, with attrition of naive T cells and TCF1+ stem-like memory T cells and accumulation of terminally differentiated effector T cells. Marrow-infiltrating NK cells also exhibit evidence of dysfunction, particularly in myeloid leukemia. Properties of immune cells identified distinct immune phenotype–based clusters correlating with disease risk in acute lymphoblastic leukemia. High-risk immune signatures were associated with expression of stem-like genes on tumor cells. These data provide a comprehensive assessment of the immune landscape of childhood leukemias and identify targets potentially amenable to therapeutic intervention. These studies also suggest that properties of the host response with depletion of naive T cells and accumulation of terminal-effector T cells may contribute to the biologic basis of disease risk. Properties of immune microenvironment identified here may also impact optimal application of immune therapies, including T cell–redirection approaches in childhood leukemia.
Jithendra Kini Bailur, Samuel S. McCachren, Katherine Pendleton, Juan C. Vasquez, Hong Seo Lim, Alyssa Duffy, Deon B. Doxie, Akhilesh Kaushal, Connor Foster, Deborah DeRyckere, Sharon Castellino, Melissa L. Kemp, Peng Qiu, Madhav V. Dhodapkar, Kavita M. Dhodapkar
Postprandial triglycerides (TGs) are elevated in people with type 2 diabetes (T2D). Glucose-lowering agents, such as glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, also reduce postprandial TG excursion. Although the glucose-lowering mechanisms of DPP-4 have been extensively studied, how the reduction of DPP-4 activity improves lipid tolerance remains unclear. Here, we demonstrate that gut-selective and systemic inhibition of DPP-4 activity reduces postprandial TG excursion in young mice. Genetic inactivation of Dpp4 simultaneously within endothelial cells and hematopoietic cells using Tie2-Cre reduced intestinal lipoprotein secretion under regular chow diet conditions. Bone marrow transplantation revealed a key role for hematopoietic cells in modulation of lipid responses arising from genetic reduction of DPP-4 activity. Unexpectedly, deletion of Dpp4 in enterocytes increased TG excursion in high-fat diet–fed (HFD-fed) mice. Moreover, chemical reduction of DPP-4 activity and increased levels of GLP-1 were uncoupled from TG excursion in older or HFD-fed mice, yet lipid tolerance remained improved in older Dpp4–/– and Dpp4EC–/– mice. Taken together, this study defines roles for specific DPP-4 compartments, age, and diet as modifiers of DPP-4 activity linked to control of gut lipid metabolism.
Elodie M. Varin, Antonio A. Hanson, Jacqueline L. Beaudry, My-Anh Nguyen, Xiemin Cao, Laurie L. Baggio, Erin E. Mulvihill, Daniel J. Drucker
Scleroderma is a devastating fibrotic autoimmune disease. Current treatments are partly effective in preventing disease progression but do not remove fibrotic tissue. Here, we evaluated whether scleroderma fibroblasts take advantage of the “don’t-eat-me-signal” CD47 and whether blocking CD47 enables the body’s immune system to get rid of diseased fibroblasts. To test this approach, we used a Jun-inducible scleroderma model. We first demonstrated in patient samples that scleroderma upregulated transcription factor JUN and increased promoter accessibilities of both JUN and CD47. Next, we established our scleroderma model, demonstrating that Jun mediated skin fibrosis through the hedgehog-dependent expansion of CD26+Sca1– fibroblasts in mice. In a niche-independent adaptive transfer model, JUN steered graft survival and conferred increased self-renewal to fibroblasts. In vivo, JUN enhanced the expression of CD47, and inhibiting CD47 eliminated an ectopic fibroblast graft and increased in vitro phagocytosis. In the syngeneic mouse, depleting macrophages ameliorated skin fibrosis. Therapeutically, combined CD47 and IL-6 blockade reversed skin fibrosis in mice and led to the rapid elimination of ectopically transplanted scleroderma cells. Altogether, our study demonstrates the efficiency of combining different immunotherapies in treating scleroderma and provides a rationale for combining CD47 and IL-6 inhibition in clinical trials.
Tristan Lerbs, Lu Cui, Megan E. King, Tim Chai, Claire Muscat, Lorinda Chung, Ryanne Brown, Kerri Rieger, Tyler Shibata, Gerlinde Wernig
Actin γ 2, smooth muscle (ACTG2) R257C mutation is the most common genetic cause of visceral myopathy. Individuals with ACTG2 mutations endure prolonged hospitalizations and surgical interventions, become dependent on intravenous nutrition and bladder catheterization, and often die in childhood. Currently, we understand little about how ACTG2 mutations cause disease, and there are no mechanism-based treatments. Our goal was to characterize the effects of ACTG2R257C on actin organization and function in visceral smooth muscle cells. We overexpressed ACTG2WT or ACTG2R257C in primary human intestinal smooth muscle cells (HISMCs) and performed detailed quantitative analyses to examine effects of ACTG2R257C on (a) actin filament formation and subcellular localization, (b) actin-dependent HISMC functions, and (c) smooth muscle contractile gene expression. ACTG2R257C resulted in 41% fewer, 13% thinner, 33% shorter, and 40% less branched ACTG2 filament bundles compared with ACTG2WT. Curiously, total F-actin probed by phalloidin and a pan-actin antibody was unchanged between ACTG2WT- and ACTG2R257C-expressing HISMCs, as was ultrastructural F-actin organization. ACTG2R257C-expressing HISMCs contracted collagen gels similar to ACTG2WT-expressing HISMCs but spread 21% more and were 11% more migratory. In conclusion, ACTG2R257C profoundly affects ACTG2 filament bundle structure, without altering global actin cytoskeleton in HISMCs.
Sohaib Khalid Hashmi, Vasia Barka, Changsong Yang, Sabine Schneider, Tatyana M. Svitkina, Robert O. Heuckeroth