Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Neutrophil extracellular traps in COVID-19
Yu Zuo, … , Yogendra Kanthi, Jason S. Knight
Yu Zuo, … , Yogendra Kanthi, Jason S. Knight
Published April 24, 2020
Citation Information: JCI Insight. 2020;5(11):e138999. https://doi.org/10.1172/jci.insight.138999.
View: Text | PDF
Research Article Infectious disease Inflammation

Neutrophil extracellular traps in COVID-19

  • Text
  • PDF
Abstract

In severe cases of coronavirus disease 2019 (COVID-19), viral pneumonia progresses to respiratory failure. Neutrophil extracellular traps (NETs) are extracellular webs of chromatin, microbicidal proteins, and oxidant enzymes that are released by neutrophils to contain infections. However, when not properly regulated, NETs have the potential to propagate inflammation and microvascular thrombosis — including in the lungs of patients with acute respiratory distress syndrome. We now report that sera from patients with COVID-19 have elevated levels of cell-free DNA, myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (Cit-H3); the latter 2 are specific markers of NETs. Highlighting the potential clinical relevance of these findings, cell-free DNA strongly correlated with acute-phase reactants, including C-reactive protein, D-dimer, and lactate dehydrogenase, as well as absolute neutrophil count. MPO-DNA associated with both cell-free DNA and absolute neutrophil count, while Cit-H3 correlated with platelet levels. Importantly, both cell-free DNA and MPO-DNA were higher in hospitalized patients receiving mechanical ventilation as compared with hospitalized patients breathing room air. Finally, sera from individuals with COVID-19 triggered NET release from control neutrophils in vitro. Future studies should investigate the predictive power of circulating NETs in longitudinal cohorts and determine the extent to which NETs may be novel therapeutic targets in severe COVID-19.

Authors

Yu Zuo, Srilakshmi Yalavarthi, Hui Shi, Kelsey Gockman, Melanie Zuo, Jacqueline A. Madison, Christopher Blair, Andrew Weber, Betsy J. Barnes, Mikala Egeblad, Robert J. Woods, Yogendra Kanthi, Jason S. Knight

×

Figure 4

COVID-19 sera trigger control neutrophils to release NETs.

Options: View larger image (or click on image) Download as PowerPoint
COVID-19 sera trigger control neutrophils to release NETs.
COVID-19 samp...
COVID-19 samples (for which sufficient sera were available) were tested for their ability to trigger neutrophils isolated from healthy controls to undergo NETosis. (A) NETosis was quantified using the cell-impermeant dye SYTOX Green as described in Methods (n = 27 COVID-19 samples, and n = 20 controls). Fluorescence intensity (excitation/emission 504 nm/523 nm) is shown on the y axis. Bars demonstrate mean and standard deviation while each data point represents a unique patient/control; ***P < 0.001 by t test. (B) In an independent set of experiments, NETosis was quantified as nuclease-liberated MPO activity (n = 27 COVID-19 samples, and n = 17 controls). Absorbance at 450 nm is shown on the y axis after subtracting background from untreated cells. Bars demonstrate mean and standard deviation while each data point represents a unique patient/control; **P < 0.01 by t test. (C) Representative image of control neutrophils cultured with 10% heterologous control serum (upper) or COVID-19 serum (lower). Neutrophil elastase is stained green and DNA is stained blue. Scale bar: 100 μm. The yellow arrows highlight some examples of NET strands.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts