Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Alveolar barrier disruption in varicella pneumonia is associated with neutrophil extracellular trap formation
Werner J.D. Ouwendijk, Henk-Jan van den Ham, Mark W. Delany, Jeroen J.A. van Kampen, Gijsbert P. van Nierop, Tamana Mehraban, Fatiha Zaaraoui-Boutahar, Wilfred F.J. van IJcken, Judith M.A. van den Brand, Rory D. de Vries, Arno C. Andeweg, Georges M.G.M. Verjans
Werner J.D. Ouwendijk, Henk-Jan van den Ham, Mark W. Delany, Jeroen J.A. van Kampen, Gijsbert P. van Nierop, Tamana Mehraban, Fatiha Zaaraoui-Boutahar, Wilfred F.J. van IJcken, Judith M.A. van den Brand, Rory D. de Vries, Arno C. Andeweg, Georges M.G.M. Verjans
View: Text | PDF
Research Article Pulmonology Virology

Alveolar barrier disruption in varicella pneumonia is associated with neutrophil extracellular trap formation

  • Text
  • PDF
Abstract

Primary varicella-zoster virus (VZV) infection in adults is often complicated by severe pneumonia, which is difficult to treat and is associated with high morbidity and mortality. Here, the simian varicella virus (SVV) nonhuman primate (NHP) model was used to investigate the pathogenesis of varicella pneumonia. SVV infection resulted in transient fever, viremia, and robust virus replication in alveolar pneumocytes and bronchus-associated lymphoid tissue. Clearance of infectious virus from lungs coincided with robust innate immune responses, leading to recruitment of inflammatory cells, mainly neutrophils and lymphocytes, and finally severe acute lung injury. SVV infection caused neutrophil activation and formation of neutrophil extracellular traps (NETs) in vitro and in vivo. Notably, NETs were also detected in lung and blood specimens of varicella pneumonia patients. Lung pathology in the SVV NHP model was associated with dysregulated expression of alveolar epithelial cell tight junction proteins (claudin-2, claudin-10, and claudin-18) and alveolar endothelial adherens junction protein VE-cadherin. Importantly, factors released by activated neutrophils, including NETs, were sufficient to reduce claudin-18 and VE-cadherin expression in NHP lung slice cultures. Collectively, the data indicate that alveolar barrier disruption in varicella pneumonia is associated with NET formation.

Authors

Werner J.D. Ouwendijk, Henk-Jan van den Ham, Mark W. Delany, Jeroen J.A. van Kampen, Gijsbert P. van Nierop, Tamana Mehraban, Fatiha Zaaraoui-Boutahar, Wilfred F.J. van IJcken, Judith M.A. van den Brand, Rory D. de Vries, Arno C. Andeweg, Georges M.G.M. Verjans

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 578 101
PDF 110 19
Figure 410 0
Supplemental data 43 2
Citation downloads 62 0
Totals 1,203 122
Total Views 1,325
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts