Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
Alveolar barrier disruption in varicella pneumonia is associated with neutrophil extracellular trap formation
Werner J.D. Ouwendijk, … , Arno C. Andeweg, Georges M.G.M. Verjans
Werner J.D. Ouwendijk, … , Arno C. Andeweg, Georges M.G.M. Verjans
Published October 6, 2020
Citation Information: JCI Insight. 2020;5(21):e138900. https://doi.org/10.1172/jci.insight.138900.
View: Text | PDF
Research Article Pulmonology Virology

Alveolar barrier disruption in varicella pneumonia is associated with neutrophil extracellular trap formation

  • Text
  • PDF
Abstract

Primary varicella-zoster virus (VZV) infection in adults is often complicated by severe pneumonia, which is difficult to treat and is associated with high morbidity and mortality. Here, the simian varicella virus (SVV) nonhuman primate (NHP) model was used to investigate the pathogenesis of varicella pneumonia. SVV infection resulted in transient fever, viremia, and robust virus replication in alveolar pneumocytes and bronchus-associated lymphoid tissue. Clearance of infectious virus from lungs coincided with robust innate immune responses, leading to recruitment of inflammatory cells, mainly neutrophils and lymphocytes, and finally severe acute lung injury. SVV infection caused neutrophil activation and formation of neutrophil extracellular traps (NETs) in vitro and in vivo. Notably, NETs were also detected in lung and blood specimens of varicella pneumonia patients. Lung pathology in the SVV NHP model was associated with dysregulated expression of alveolar epithelial cell tight junction proteins (claudin-2, claudin-10, and claudin-18) and alveolar endothelial adherens junction protein VE-cadherin. Importantly, factors released by activated neutrophils, including NETs, were sufficient to reduce claudin-18 and VE-cadherin expression in NHP lung slice cultures. Collectively, the data indicate that alveolar barrier disruption in varicella pneumonia is associated with NET formation.

Authors

Werner J.D. Ouwendijk, Henk-Jan van den Ham, Mark W. Delany, Jeroen J.A. van Kampen, Gijsbert P. van Nierop, Tamana Mehraban, Fatiha Zaaraoui-Boutahar, Wilfred F.J. van IJcken, Judith M.A. van den Brand, Rory D. de Vries, Arno C. Andeweg, Georges M.G.M. Verjans

×

Full Text PDF | Download (7.18 MB)

Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts