Abstract

Peptidylarginine deiminases (PADs) are a family of calcium-dependent enzymes that are involved in a variety of human disorders, including cancer and autoimmune diseases. Although targeting PAD4 has shown no benefit in sepsis, the role of PAD2 remains unknown. Here, we report that PAD2 is engaged in sepsis and sepsis-induced acute lung injury in both human patients and mice. Pad2–/– or selective inhibition of PAD2 by a small molecule inhibitor increased survival and improved overall outcomes in mouse models of sepsis. Pad2 deficiency decreased neutrophil extracellular trap (NET) formation. Importantly, Pad2 deficiency inhibited Caspase-11–dependent pyroptosis in vivo and in vitro. Suppression of PAD2 expression reduced inflammation and increased macrophage bactericidal activity. In contrast to Pad2–/–, Pad4 deficiency enhanced activation of Caspase-11–dependent pyroptosis in BM-derived macrophages and displayed no survival improvement in a mouse sepsis model. Collectively, our findings highlight the potential of PAD2 as an indicative marker and therapeutic target for sepsis.

Authors

Yuzi Tian, Shibin Qu, Hasan B. Alam, Aaron M. Williams, Zhenyu Wu, Qiufang Deng, Baihong Pan, Jing Zhou, Baoling Liu, Xiuzhen Duan, Jianjie Ma, Santanu Mondal, Paul R. Thompson, Kathleen A. Stringer, Theodore J. Standiford, Yongqing Li

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement