Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
A PoleP286R mouse model of endometrial cancer recapitulates high mutational burden and immunotherapy response
Hao-Dong Li, … , Yang-Xin Fu, Diego H. Castrillon
Hao-Dong Li, … , Yang-Xin Fu, Diego H. Castrillon
Published July 23, 2020
Citation Information: JCI Insight. 2020;5(14):e138829. https://doi.org/10.1172/jci.insight.138829.
View: Text | PDF
Research Article Genetics Oncology

A PoleP286R mouse model of endometrial cancer recapitulates high mutational burden and immunotherapy response

  • Text
  • PDF
Abstract

Cancer is instigated by mutator phenotypes, including deficient mismatch repair and p53-associated chromosomal instability. More recently, a distinct class of cancers was identified with unusually high mutational loads due to heterozygous amino acid substitutions (most commonly P286R) in the proofreading domain of DNA polymerase ε, the leading strand replicase encoded by POLE. Immunotherapy has revolutionized cancer treatment, but new model systems are needed to recapitulate high mutational burdens characterizing human cancers and permit study of mechanisms underlying clinical responses. Here, we show that activation of a conditional LSL-PoleP286R allele in endometrium is sufficient to elicit in all animals endometrial cancers closely resembling their human counterparts, including very high mutational burden. Diverse investigations uncovered potentially novel aspects of Pole-driven tumorigenesis, including secondary p53 mutations associated with tetraploidy, and cooperation with defective mismatch repair through inactivation of Msh2. Most significantly, there were robust antitumor immune responses with increased T cell infiltrates, accelerated tumor growth following T cell depletion, and unfailing clinical regression following immune checkpoint therapy. This model predicts that human POLE-driven cancers will prove consistently responsive to immune checkpoint blockade. Furthermore, this is a robust and efficient approach to recapitulate in mice the high mutational burdens and immune responses characterizing human cancers.

Authors

Hao-Dong Li, Changzheng Lu, He Zhang, Qing Hu, Junqiu Zhang, Ileana C. Cuevas, Subhransu S. Sahoo, Mitzi Aguilar, Elizabeth G. Maurais, Shanrong Zhang, Xiaojing Wang, Esra A. Akbay, Guo-Min Li, Bo Li, Prasad Koduru, Peter Ly, Yang-Xin Fu, Diego H. Castrillon

×

Full Text PDF | Download (10.75 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts