Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Endothelial cell prostaglandin E2 receptor EP4 is essential for blood pressure homeostasis
Hu Xu, … , Xiaoyan Zhang, Youfei Guan
Hu Xu, … , Xiaoyan Zhang, Youfei Guan
Published July 9, 2020
Citation Information: JCI Insight. 2020;5(13):e138505. https://doi.org/10.1172/jci.insight.138505.
View: Text | PDF
Research Article Vascular biology

Endothelial cell prostaglandin E2 receptor EP4 is essential for blood pressure homeostasis

  • Text
  • PDF
Abstract

Prostaglandin E2 and its cognate EP1–4 receptors play important roles in blood pressure (BP) regulation. Herein, we show that endothelial cell–specific (EC-specific) EP4 gene–knockout mice (EC-EP4–/–) exhibited elevated, while EC-specific EP4-overexpression mice (EC-hEP4OE) displayed reduced, BP levels compared with the control mice under both basal and high-salt diet–fed conditions. The altered BP was completely abolished by treatment with l–NG-nitro-l-arginine methyl ester (l-NAME), a competitive inhibitor of endothelial nitric oxide synthase (eNOS). The mesenteric arteries of the EC-EP4–/– mice showed increased vasoconstrictive response to angiotensin II and reduced vasorelaxant response to acetylcholine, both of which were eliminated by l-NAME. Furthermore, EP4 activation significantly reduced BP levels in hypertensive rats. Mechanistically, EP4 deletion markedly decreased NO contents in blood vessels via reducing eNOS phosphorylation at Ser1177. EP4 enhanced NO production mainly through the AMPK pathway in cultured ECs. Collectively, our findings demonstrate that endothelial EP4 is essential for BP homeostasis.

Authors

Hu Xu, Bingying Fang, Shengnan Du, Sailun Wang, Qingwei Li, Xiao Jia, Chengzhen Bao, Lan Ye, Xue Sui, Lei Qian, Zhilin Luan, Guangrui Yang, Feng Zheng, Nanping Wang, Lihong Chen, Xiaoyan Zhang, Youfei Guan

×

Full Text PDF

Download PDF (4.45 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts