Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Increased FGF-23 levels are linked to ineffective erythropoiesis and impaired bone mineralization in myelodysplastic syndromes
Heike Weidner, … , Lorenz C. Hofbauer, Martina Rauner
Heike Weidner, … , Lorenz C. Hofbauer, Martina Rauner
Published August 6, 2020
Citation Information: JCI Insight. 2020;5(15):e137062. https://doi.org/10.1172/jci.insight.137062.
View: Text | PDF
Research Article Bone biology Hematology

Increased FGF-23 levels are linked to ineffective erythropoiesis and impaired bone mineralization in myelodysplastic syndromes

  • Text
  • PDF
Abstract

Myelodysplastic syndromes (MDS) are clonal malignant hematopoietic disorders in the elderly characterized by ineffective hematopoiesis. This is accompanied by an altered bone microenvironment, which contributes to MDS progression and higher bone fragility. The underlying mechanisms remain largely unexplored. Here, we show that myelodysplastic NUP98‑HOXD13 (NHD13) transgenic mice display an abnormally high number of osteoblasts, yet a higher fraction of nonmineralized bone, indicating delayed bone mineralization. This was accompanied by high fibroblast growth factor-23 (FGF-23) serum levels, a phosphaturic hormone that inhibits bone mineralization and erythropoiesis. While Fgf23 mRNA expression was low in bone, brain, and kidney of NHD13 mice, its expression was increased in erythroid precursors. Coculturing these precursors with WT osteoblasts induced osteoblast marker gene expression, which was inhibited by blocking FGF-23. Finally, antibody-based neutralization of FGF-23 in myelodysplastic NHD13 mice improved bone mineralization and bone microarchitecture, and it ameliorated anemia. Importantly, higher serum levels of FGF‑23 and an elevated amount of nonmineralized bone in patients with MDS validated the findings. C‑terminal FGF‑23 correlated negatively with hemoglobin levels and positively with the amount of nonmineralized bone. Thus, our study identifies FGF-23 as a link between altered bone structure and ineffective erythropoiesis in MDS with the prospects of a targeted therapeutic intervention.

Authors

Heike Weidner, Ulrike Baschant, Franziska Lademann, Maria G. Ledesma Colunga, Ekaterina Balaian, Christine Hofbauer, Barbara M. Misof, Paul Roschger, Stéphane Blouin, William G. Richards, Uwe Platzbecker, Lorenz C. Hofbauer, Martina Rauner

×
Options: View larger image (or click on image) Download as PowerPoint
Blood, histological, and plasma parameters of MDS patients

Blood, histological, and plasma parameters of MDS patients


Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts