Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Linking epigenetic dysregulation, mitochondrial impairment, and metabolic dysfunction in SBMA motor neurons
Naemeh Pourshafie, Ester Masati, Eric Bunker, Alec R. Nickolls, Parisorn Thepmankorn, Kory Johnson, Xia Feng, Tyler Ekins, Christopher Grunseich, Kenneth H. Fischbeck
Naemeh Pourshafie, Ester Masati, Eric Bunker, Alec R. Nickolls, Parisorn Thepmankorn, Kory Johnson, Xia Feng, Tyler Ekins, Christopher Grunseich, Kenneth H. Fischbeck
View: Text | PDF
Research Article Genetics Neuroscience

Linking epigenetic dysregulation, mitochondrial impairment, and metabolic dysfunction in SBMA motor neurons

  • Text
  • PDF
Abstract

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disorder caused by a polyglutamine expansion in the androgen receptor (AR). Using gene expression analysis and ChIP sequencing, we mapped transcriptional changes in genetically engineered patient stem cell–derived motor neurons. We found that transcriptional dysregulation in SBMA can occur through AR-mediated histone modification. We detected reduced histone acetylation, along with decreased expression of genes encoding compensatory metabolic proteins and reduced substrate availability for mitochondrial function. Furthermore, we found that pyruvate supplementation corrected this deficiency and improved mitochondrial function and SBMA motor neuron viability. We propose that epigenetic dysregulation of metabolic genes contributes to reduced mitochondrial ATP production. Our results show a molecular link between altered epigenetic regulation and mitochondrial metabolism that contributes to neurodegeneration.

Authors

Naemeh Pourshafie, Ester Masati, Eric Bunker, Alec R. Nickolls, Parisorn Thepmankorn, Kory Johnson, Xia Feng, Tyler Ekins, Christopher Grunseich, Kenneth H. Fischbeck

×

Figure 3

Alteration in metabolic pathways mediated by reduced H3K27ac.

Options: View larger image (or click on image) Download as PowerPoint
Alteration in metabolic pathways mediated by reduced H3K27ac.
(A) Genome...
(A) Genome ontology (GO) enrichment analysis of the closest gene with greater than 2-fold reduced H3K27ac using Panther. (B) Ingenuity Pathway Analysis (IPA) of the closest genes with greater than 2-fold reduced H3K27ac binding. Analysis demonstrating key metabolic pathways identified in the GO enrichment analysis in. mTOR upstream regulatory pathways are highlighted in blue. (C) IPA of RNA-seq data showing percentage of genes upregulated (red), genes downregulated (blue), or genes with no change (gray) within each metabolic pathway. iMNs were treated with 10 nM DHT.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts