Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
α-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson’s disease
Tracy A. Cole, Hien Zhao, Timothy J. Collier, Ivette Sandoval, Caryl E. Sortwell, Kathy Steece-Collier, Brian F. Daley, Alix Booms, Jack Lipton, Mackenzie Welch, Melissa Berman, Luke Jandreski, Danielle Graham, Andreas Weihofen, Stephanie Celano, Emily Schulz, Allyson Cole-Strauss, Esteban Luna, Duc Quach, Apoorva Mohan, C. Frank Bennett, Eric E. Swayze, Holly B. Kordasiewicz, Kelvin C. Luk, Katrina L. Paumier
Tracy A. Cole, Hien Zhao, Timothy J. Collier, Ivette Sandoval, Caryl E. Sortwell, Kathy Steece-Collier, Brian F. Daley, Alix Booms, Jack Lipton, Mackenzie Welch, Melissa Berman, Luke Jandreski, Danielle Graham, Andreas Weihofen, Stephanie Celano, Emily Schulz, Allyson Cole-Strauss, Esteban Luna, Duc Quach, Apoorva Mohan, C. Frank Bennett, Eric E. Swayze, Holly B. Kordasiewicz, Kelvin C. Luk, Katrina L. Paumier
View: Text | PDF
Research Article Neuroscience Therapeutics

α-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson’s disease

  • Text
  • PDF
Abstract

Parkinson’s disease (PD) is a prevalent neurodegenerative disease with no approved disease-modifying therapies. Multiplications, mutations, and single nucleotide polymorphisms in the SNCA gene, encoding α-synuclein (aSyn) protein, either cause or increase risk for PD. Intracellular accumulations of aSyn are pathological hallmarks of PD. Taken together, reduction of aSyn production may provide a disease-modifying therapy for PD. We show that antisense oligonucleotides (ASOs) reduce production of aSyn in rodent preformed fibril (PFF) models of PD. Reduced aSyn production leads to prevention and removal of established aSyn pathology and prevents dopaminergic cell dysfunction. In addition, we address the translational potential of the approach through characterization of human SNCA-targeting ASOs that efficiently suppress the human SNCA transcript in vivo. We demonstrate broad activity and distribution of the human SNCA ASOs throughout the nonhuman primate brain and a corresponding decrease in aSyn cerebral spinal fluid (CSF) levels. Taken together, these data suggest that, by inhibiting production of aSyn, it may be possible to reverse established pathology; thus, these data support the development of SNCA ASOs as a potential disease-modifying therapy for PD and related synucleinopathies.

Authors

Tracy A. Cole, Hien Zhao, Timothy J. Collier, Ivette Sandoval, Caryl E. Sortwell, Kathy Steece-Collier, Brian F. Daley, Alix Booms, Jack Lipton, Mackenzie Welch, Melissa Berman, Luke Jandreski, Danielle Graham, Andreas Weihofen, Stephanie Celano, Emily Schulz, Allyson Cole-Strauss, Esteban Luna, Duc Quach, Apoorva Mohan, C. Frank Bennett, Eric E. Swayze, Holly B. Kordasiewicz, Kelvin C. Luk, Katrina L. Paumier

×

Figure 2

ASO-mediated reduction of Snca is dose responsive and prevents pathogenic aSyn aggregate deposition in an in vivo PFF model of PD.

Options: View larger image (or click on image) Download as PowerPoint
ASO-mediated reduction of Snca is dose responsive and prevents pathogeni...
(A–C) Three-week dose response of rat Snca levels from cortical, striatal, and midbrain rat samples by qPCR (n = 8 per dose). (D) Timeline for ASO dose-response administration prior to PFF injection paradigm. (E) Quantification of immunostaining for pSer129+ aggregate counts by total enumeration (n = 6, 7, 5, 8, 8 for PBS, 100 μg, 300 μg, 1000 μg, and CTL ASO, respectively). (F) Representative images of pSer129+ aggregate counts in the substantia nigra. Scale bar: 100 μm. Data are represented as ± SEM. **P < 0.01, ***P < 0.001, ****P < 0.0001 (2-way ANOVA with Tukey post hoc analyses for duration of action, with all other analyses using 1-way ANOVA with Tukey post hoc analyses). PFF, preformed fibril; TRMT, treatment; CTL ASO, control ASO.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts