The blood-brain barrier is formed by capillary endothelial cells expressing connexin 37 (Cx37), Cx40, and Cx43 and is joined by closely apposed astrocytes expressing Cx43 and Cx30. We investigated whether connexin-targeting peptides could limit barrier leakage triggered by LPS-induced systemic inflammation in mice. Intraperitoneal LPS administration increased endothelial and astrocytic Cx43 expression; elevated TNF-α, IL-1β, IFN-γ, and IL-6 in plasma and IL-6 in the brain; and induced barrier leakage recorded over 24 hours. Barrier leakage was largely prevented by global Cx43 knockdown and Cx43/Cx30 double knockout in astrocytes, slightly diminished by endothelial Cx43 knockout, and not protected by global Cx30 knockout. Intravenous administration of Gap27 or Tat-Gap19 peptides just before LPS also prevented barrier leakage, and intravenously administered BAPTA-AM to chelate intracellular calcium was equally effective. Patch-clamp experiments demonstrated LPS-induced Cx43 hemichannel opening in endothelial cells, which was suppressed by Gap27, Gap19, and BAPTA. LPS additionally triggered astrogliosis that was prevented by intravenous Tat-Gap19 or BAPTA-AM. Cortically applied Tat-Gap19 or BAPTA-AM to primarily target astrocytes also strongly diminished barrier leakage. In vivo dye uptake and in vitro patch-clamp showed Cx43 hemichannel opening in astrocytes that was induced by IL-6 in a calcium-dependent manner. We conclude that targeting endothelial and astrocytic connexins is a powerful approach to limit barrier failure and astrogliosis.


Marijke De Bock, Maarten De Smet, Stijn Verwaerde, Hanane Tahiri, Steffi Schumacher, Valérie Van Haver, Katja Witschas, Christian Steinhäuser, Nathalie Rouach, Roosmarijn E. Vandenbroucke, Luc Leybaert


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.