Spinal cord injury (SCI) remains a devastating condition with poor prognosis and very limited treatment options. Affected patients are severely restricted in their daily activities. Shock wave therapy (SWT) has shown potent regenerative properties in bone fractures, wounds, and ischemic myocardium via activation of the innate immune receptor TLR3. Here, we report on the efficacy of SWT for regeneration of SCI. SWT improved motor function and decreased lesion size in WT but not Tlr3–/– mice via inhibition of neuronal degeneration and IL6-dependent recruitment and differentiation of neuronal progenitor cells. Both SWT and TLR3 stimulation enhanced neuronal sprouting and improved neuronal survival, even in human spinal cord cultures. We identified tlr3 as crucial enhancer of spinal cord regeneration in zebrafish. Our findings indicate that TLR3 signaling is involved in neuroprotection and spinal cord repair and suggest that TLR3 stimulation via SWT could become a potent regenerative treatment option.
Can Gollmann-Tepeköylü, Felix Nägele, Michael Graber, Leo Pölzl, Daniela Lobenwein, Jakob Hirsch, Angela An, Regina Irschick, Bernhard Röhrs, Christian Kremser, Hubert Hackl, Rosalie Huber, Serena Venezia, David Hercher, Helga Fritsch, Nikolaos Bonaros, Nadia Stefanova, Ivan Tancevski, Dirk Meyer, Michael Grimm, Johannes Holfeld
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 491 | 187 |
547 | 74 | |
Figure | 175 | 1 |
Table | 32 | 0 |
Supplemental data | 23 | 0 |
Citation downloads | 41 | 0 |
Totals | 1,309 | 262 |
Total Views | 1,571 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.