Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Duchenne muscular dystrophy hiPSC–derived myoblast drug screen identifies compounds that ameliorate disease in mdx mice
Congshan Sun, In Young Choi, Yazmin I. Rovira Gonzalez, Peter Andersen, C. Conover Talbot Jr., Shama R. Iyer, Richard M. Lovering, Kathryn R. Wagner, Gabsang Lee
Congshan Sun, In Young Choi, Yazmin I. Rovira Gonzalez, Peter Andersen, C. Conover Talbot Jr., Shama R. Iyer, Richard M. Lovering, Kathryn R. Wagner, Gabsang Lee
View: Text | PDF
Research Article Muscle biology Stem cells

Duchenne muscular dystrophy hiPSC–derived myoblast drug screen identifies compounds that ameliorate disease in mdx mice

  • Text
  • PDF
Abstract

Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy. In the present study, when human induced pluripotent stem cells (hiPSCs) were differentiated into myoblasts, the myoblasts derived from DMD patient hiPSCs (DMD hiPSC–derived myoblasts) exhibited an identifiable DMD-relevant phenotype: myogenic fusion deficiency. Based on this model, we developed a DMD hiPSC–derived myoblast screening platform employing a high-content imaging (BD Pathway 855) approach to generate parameters describing morphological as well as myogenic marker protein expression. Following treatment of the cells with 1524 compounds from the Johns Hopkins Clinical Compound Library, compounds that enhanced myogenic fusion of DMD hiPSC–derived myoblasts were identified. The final hits were ginsenoside Rd and fenofibrate. Transcriptional profiling revealed that ginsenoside Rd is functionally related to FLT3 signaling, while fenofibrate is linked to TGF-β signaling. Preclinical tests in mdx mice showed that treatment with these 2 hit compounds can significantly ameliorate some of the skeletal muscle phenotypes caused by dystrophin deficiency, supporting their therapeutic potential. Further study revealed that fenofibrate could inhibit mitochondrion-induced apoptosis in DMD hiPSC–derived cardiomyocytes. We have developed a platform based on DMD hiPSC–derived myoblasts for drug screening and identified 2 promising small molecules with in vivo efficacy.

Authors

Congshan Sun, In Young Choi, Yazmin I. Rovira Gonzalez, Peter Andersen, C. Conover Talbot Jr., Shama R. Iyer, Richard M. Lovering, Kathryn R. Wagner, Gabsang Lee

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 969 340
PDF 132 42
Figure 440 0
Table 48 0
Supplemental data 68 12
Citation downloads 94 0
Totals 1,751 394
Total Views 2,145
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts