Loss of melanocytes is the pathological hallmark of vitiligo, a chronic inflammatory skin depigmenting disorder induced by exaggerated immune response, including autoreactive CD8 T cells producing high levels of type 1 cytokines. However, the interplay between this inflammatory response and melanocyte disappearance remains to be fully characterized. Here, we demonstrate that vitiligo skin contains a significant proportion of suprabasal melanocytes, associated with disruption of E-cadherin expression, a major protein involved in melanocyte adhesion. This phenomenon is also observed in lesional psoriatic skin. Importantly, apoptotic melanocytes were mainly observed once cells were detached from the basal layer of the epidermis, suggesting that additional mechanism(s) could be involved in melanocyte loss. The type 1 cytokines IFN-γ and TNF-α induce melanocyte detachment through E-cadherin disruption and the release of its soluble form, partly due to MMP-9. The levels of MMP-9 are increased in the skin and sera of patients with vitiligo, and MMP-9 is produced by keratinocytes in response to IFN-γ and TNF-α. Inhibition of MMP-9 or the JAK/STAT signaling pathway prevents melanocyte detachment in vitro and in vivo. Therefore, stabilization of melanocytes in the basal layer of the epidermis by preventing E-cadherin disruption appears promising for the prevention of depigmentation occurring in vitiligo and during chronic skin inflammation.
Nesrine Boukhedouni, Christina Martins, Anne-Sophie Darrigade, Claire Drullion, Jérôme Rambert, Christine Barrault, Julien Garnier, Clément Jacquemin, Denis Thiolat, Fabienne Lucchese, Franck Morel, Khaled Ezzedine, Alain Taieb, François-Xavier Bernard, Julien Seneschal, Katia Boniface
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 959 | 465 |
164 | 209 | |
Figure | 274 | 3 |
Supplemental data | 52 | 9 |
Citation downloads | 87 | 0 |
Totals | 1,536 | 686 |
Total Views | 2,222 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.