Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Computational discovery of therapeutic candidates for preventing preterm birth
Brian L. Le, … , David K. Stevenson, Marina Sirota
Brian L. Le, … , David K. Stevenson, Marina Sirota
Published February 13, 2020
Citation Information: JCI Insight. 2020;5(3):e133761. https://doi.org/10.1172/jci.insight.133761.
View: Text | PDF
Research Article Reproductive biology Therapeutics Article has an altmetric score of 54

Computational discovery of therapeutic candidates for preventing preterm birth

  • Text
  • PDF
Abstract

Few therapeutic methods exist for preventing preterm birth (PTB), or delivery before completing 37 weeks of gestation. In the US, progesterone (P4) supplementation is the only FDA-approved drug for use in preventing recurrent spontaneous PTB. However, P4 has limited effectiveness, working in only approximately one-third of cases. Computational drug repositioning leverages data on existing drugs to discover novel therapeutic uses. We used a rank-based pattern-matching strategy to compare the differential gene expression signature for PTB to differential gene expression drug profiles in the Connectivity Map database and assigned a reversal score to each PTB-drug pair. Eighty-three drugs, including P4, had significantly reversed differential gene expression compared with that found for PTB. Many of these compounds have been evaluated in the context of pregnancy, with 13 belonging to pregnancy category A or B — indicating no known risk in human pregnancy. We focused our validation efforts on lansoprazole, a proton-pump inhibitor, which has a strong reversal score and a good safety profile. We tested lansoprazole in an animal inflammation model using LPS, which showed a significant increase in fetal viability compared with LPS treatment alone. These promising results demonstrate the effectiveness of the computational drug repositioning pipeline to identify compounds that could be effective in preventing PTB.

Authors

Brian L. Le, Sota Iwatani, Ronald J. Wong, David K. Stevenson, Marina Sirota

×

Full Text PDF

Download PDF (1.45 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Picked up by 4 news outlets
Blogged by 1
Posted by 27 X users
Referenced in 1 patents
On 2 Facebook pages
23 readers on Mendeley
See more details