Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

Osteoclast-derived IGF1 is required for pagetic lesion formation in vivo
Kazuaki Miyagawa, Yasuhisa Ohata, Jesus Delgado-Calle, Jumpei Teramachi, Hua Zhou, David D. Dempster, Mark A. Subler, Jolene J. Windle, John M. Chirgwin, G. David Roodman, Noriyoshi Kurihara
Kazuaki Miyagawa, Yasuhisa Ohata, Jesus Delgado-Calle, Jumpei Teramachi, Hua Zhou, David D. Dempster, Mark A. Subler, Jolene J. Windle, John M. Chirgwin, G. David Roodman, Noriyoshi Kurihara
View: Text | PDF
Research Article Bone biology Hematology

Osteoclast-derived IGF1 is required for pagetic lesion formation in vivo

  • Text
  • PDF
Abstract

We report that transgenic mice expressing measles virus nucleocapsid protein (MVNP) in osteoclasts (OCLs) (MVNP mice) are Paget’s disease (PD) models and that OCLs from patients with PD and MVNP mice express high levels of OCL-derived IGF1 (OCL-IGF1). To determine OCL-IGF1’s role in PD and normal bone remodeling, we generated WT and MVNP mice with targeted deletion of Igf1 in OCLs (Igf1-cKO) and MVNP/Igf1-cKO mice, and we assessed OCL-IGF1’s effects on bone mass, bone formation rate, EphB2/EphB4 expression on OCLs and osteoblasts (OBs), and pagetic bone lesions (PDLs). A total of 40% of MVNP mice, but no MVNP/Igf1-cKO mice, had PDLs. Bone volume/tissue volume (BV/TV) was decreased by 60% in lumbar vertebrae and femurs of MVNP/Igf1-cKO versus MVNP mice with PDLs and by 45% versus all MVNP mice tested. Bone formation rates were decreased 50% in Igf1-cKO and MVNP/Igf1-cKO mice versus WT and MVNP mice. MVNP mice had increased EphB2 and EphB4 levels in OCLs/OBs versus WT and MVNP/Igf1-cKO, with none detectable in OCLs/OBs of Igf1-cKO mice. Mechanistically, IL-6 induced the increased OCL-IGF1 in MVNP mice. These results suggest that high OCL-IGF1 levels increase bone formation and PDLs in PD by enhancing EphB2/EphB4 expression in vivo and suggest OCL-IGF1 may contribute to normal bone remodeling.

Authors

Kazuaki Miyagawa, Yasuhisa Ohata, Jesus Delgado-Calle, Jumpei Teramachi, Hua Zhou, David D. Dempster, Mark A. Subler, Jolene J. Windle, John M. Chirgwin, G. David Roodman, Noriyoshi Kurihara

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts