Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Chemical inhibition of FBXO7 reduces inflammation and confers neuroprotection by stabilizing the mitochondrial kinase PINK1
Yuan Liu, … , Bill B. Chen, Rama K. Mallampalli
Yuan Liu, … , Bill B. Chen, Rama K. Mallampalli
Published June 4, 2020
Citation Information: JCI Insight. 2020;5(11):e131834. https://doi.org/10.1172/jci.insight.131834.
View: Text | PDF
Research Article Neuroscience

Chemical inhibition of FBXO7 reduces inflammation and confers neuroprotection by stabilizing the mitochondrial kinase PINK1

  • Text
  • PDF
Abstract

Mitochondrial quality control is mediated by the PTEN-induced kinase 1 (PINK1), a cytoprotective protein that is dysregulated in inflammatory lung injury and neurodegenerative diseases. Here, we show that a ubiquitin E3 ligase receptor component, FBXO7, targets PINK1 for its cellular disposal. FBXO7, by mediating PINK1 ubiquitylation and degradation, was sufficient to induce mitochondrial injury and inflammation in experimental pneumonia. A computational simulation–based screen led to the identification of a small molecule, BC1464, which abrogated FBXO7 and PINK1 association, leading to increased cellular PINK1 concentrations and activities, and limiting mitochondrial damage. BC1464 exerted antiinflammatory activity in human tissue explants and murine lung inflammation models. Furthermore, BC1464 conferred neuroprotection in primary cortical neurons, human neuroblastoma cells, and patient-derived cells in several culture models of Parkinson’s disease. The data highlight a unique opportunity to use small molecule antagonists that disrupt PINK1 interaction with the ubiquitin apparatus to enhance mitochondrial quality, limit inflammatory injury, and maintain neuronal viability.

Authors

Yuan Liu, Travis B. Lear, Manish Verma, Kent Z.Q. Wang, P. Anthony Otero, Alison C. McKelvey, Sarah R. Dunn, Erin Steer, Nicholas W. Bateman, Christine Wu, Yu Jiang, Nathaniel M. Weathington, Mauricio Rojas, Charleen T. Chu, Bill B. Chen, Rama K. Mallampalli

×

Full Text PDF

Download PDF (16.49 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts