Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Neutrophil-targeted, protease-activated pulmonary drug delivery blocks airway and systemic inflammation
Joscelyn C. Mejías, … , Rabindra Tirouvanziam, Krishnendu Roy
Joscelyn C. Mejías, … , Rabindra Tirouvanziam, Krishnendu Roy
Published October 29, 2019
Citation Information: JCI Insight. 2019;4(23):e131468. https://doi.org/10.1172/jci.insight.131468.
View: Text | PDF
Research Article Inflammation Pulmonology

Neutrophil-targeted, protease-activated pulmonary drug delivery blocks airway and systemic inflammation

  • Text
  • PDF
Abstract

Pulmonary drug delivery presents a unique opportunity to target lower airway inflammation, which is often characterized by the massive recruitment of neutrophils from blood. However, specific therapies are lacking modulation of airway neutrophil function, and difficult challenges must be overcome to achieve therapeutic efficacy against pulmonary inflammation, notably drug hydrophobicity, mucociliary and macrophage-dependent clearance, and high extracellular protease burden. Here, we present a multistage, aerodynamically favorable delivery platform that uses extracellular proteolysis to its advantage to deliver nanoparticle-embedded hydrophobic drugs to neutrophils within the lower airways. Our design consists of a self-regulated nanoparticle-in-microgel system, in which microgel activation is triggered by extracellular elastase (degranulated by inflammatory neutrophils), and nanoparticles are loaded with Nexinhib20, a potent neutrophil degranulation inhibitor. Successful in vivo delivery of Nexinhib20 to the airways and into neutrophils promoted resolution of the inflammatory response by dampening neutrophil recruitment and degranulation, proinflammatory cytokine production in both airway and systemic compartments, as well as the presence of neutrophil-derived pathological extracellular vesicles in the lung fluid. Our findings showcase a new platform that overcomes challenges in pulmonary drug delivery and allows customization to match the proteolytic footprint of given diseases.

Authors

Joscelyn C. Mejías, Osric A. Forrest, Camilla Margaroli, David A. Frey Rubio, Liliana Viera, Jindong Li, Xin Xu, Amit Gaggar, Rabindra Tirouvanziam, Krishnendu Roy

×

Full Text PDF | Download (7.00 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts