Mice homozygous for a hypomorphic allele of DNA replication factor minichromosome maintenance protein 2 (designated Mcm2cre/cre) develop precursor T cell lymphoblastic leukemia/lymphoma (pre-T LBL) with 4–32 small interstitial deletions per tumor. Mice that express a NUP98-HOXD13 (NHD13) transgene develop multiple types of leukemia, including myeloid and T and B lymphocyte. All Mcm2cre/cre NHD13+ mice develop pre-T LBL, and 26% develop an unrelated, concurrent B cell precursor acute lymphoblastic leukemia (BCP-ALL). Copy number alteration (CNA) analysis demonstrated that pre-T LBLs were characterized by homozygous deletions of Pten and Tcf3 and partial deletions of Notch1 leading to Notch1 activation. In contrast, BCP-ALLs were characterized by recurrent deletions involving Pax5 and Ptpn1 and copy number gain of Abl1 and Nup214 resulting in a Nup214-Abl1 fusion. We present a model in which Mcm2 deficiency leads to replicative stress, DNA double strand breaks (DSBs), and resultant CNAs due to errors in DNA DSB repair. CNAs that involve critical oncogenic pathways are then selected in vivo as malignant lymphoblasts because of a fitness advantage. Some CNAs, such as those involving Abl1 and Notch1, represent attractive targets for therapy.
Mianmian Yin, Timour Baslan, Robert L. Walker, Yuelin J. Zhu, Amy Freeland, Toshihiro Matsukawa, Sriram Sridharan, André Nussenzweig, Steven C. Pruitt, Scott W. Lowe, Paul S. Meltzer, Peter D. Aplan