Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice
Wei Cai, Xuejiao Dai, Jie Chen, Jingyan Zhao, Mingyue Xu, Lili Zhang, Boyu Yang, Wenting Zhang, Marcelo Rocha, Toshimasa Nakao, Julia Kofler, Yejie Shi, R. Anne Stetler, Xiaoming Hu, Jun Chen
Wei Cai, Xuejiao Dai, Jie Chen, Jingyan Zhao, Mingyue Xu, Lili Zhang, Boyu Yang, Wenting Zhang, Marcelo Rocha, Toshimasa Nakao, Julia Kofler, Yejie Shi, R. Anne Stetler, Xiaoming Hu, Jun Chen
View: Text | PDF
Research Article Inflammation Neuroscience

STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice

  • Text
  • PDF
Abstract

Efferocytosis, or phagocytic clearance of dead/dying cells by brain-resident microglia and/or infiltrating macrophages, is instrumental for inflammation resolution and restoration of brain homeostasis after stroke. Here, we identify the signal transducer and activator of transcription 6/arginase1 (STAT6/Arg1) signaling axis as a potentially novel mechanism that orchestrates microglia/macrophage responses in the ischemic brain. Activation of STAT6 was observed in microglia/macrophages in the ischemic territory in a mouse model of stroke and in stroke patients. STAT6 deficiency resulted in reduced clearance of dead/dying neurons, increased inflammatory gene signature in microglia/macrophages, and enlarged infarct volume early after experimental stroke. All of these pathological changes culminated in an increased brain tissue loss and exacerbated long-term functional deficits. Combined in vivo analyses using BM chimeras and in vitro experiments using microglia/macrophage-neuron cocultures confirmed that STAT6 activation in both microglia and macrophages was essential for neuroprotection. Adoptive transfer of WT macrophages into STAT6-KO mice reduced accumulation of dead neurons in the ischemic territory and ameliorated brain infarction. Furthermore, decreased expression of Arg1 in STAT6–/– microglia/macrophages was responsible for impairments in efferocytosis and loss of antiinflammatory modality. Our study suggests that efferocytosis via STAT6/Arg1 modulates microglia/macrophage phenotype, accelerates inflammation resolution, and improves stroke outcomes.

Authors

Wei Cai, Xuejiao Dai, Jie Chen, Jingyan Zhao, Mingyue Xu, Lili Zhang, Boyu Yang, Wenting Zhang, Marcelo Rocha, Toshimasa Nakao, Julia Kofler, Yejie Shi, R. Anne Stetler, Xiaoming Hu, Jun Chen

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 3,718 1,665
PDF 275 333
Figure 2,157 3
Supplemental data 89 97
Citation downloads 97 0
Totals 6,336 2,098
Total Views 8,434
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts