Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Interleukin-13 disrupts type 2 pneumocyte stem cell activity
Kristen M. Glisinski, … , Matthew W. Foster, Christina E. Barkauskas
Kristen M. Glisinski, … , Matthew W. Foster, Christina E. Barkauskas
Published January 16, 2020
Citation Information: JCI Insight. 2020;5(1):e131232. https://doi.org/10.1172/jci.insight.131232.
View: Text | PDF
Research Article Pulmonology Stem cells

Interleukin-13 disrupts type 2 pneumocyte stem cell activity

  • Text
  • PDF
Abstract

The T helper 2 (Th2) inflammatory cytokine interleukin-13 (IL-13) has been associated with both obstructive and fibrotic lung diseases; however, its specific effect on the epithelial stem cells in the gas exchange compartment of the lung (alveolar space) has not been explored. Here, we used in vivo lung models of homeostasis and repair, ex vivo organoid platforms, and potentially novel quantitative proteomic techniques to show that IL-13 disrupts the self-renewal and differentiation of both murine and human type 2 alveolar epithelial cells (AEC2s). Significantly, we find that IL-13 promotes ectopic expression of markers typically associated with bronchiolar airway cells and commonly seen in the alveolar region of lung tissue from patients with idiopathic pulmonary fibrosis. Furthermore, we identify a number of proteins that are differentially secreted by AEC2s in response to IL-13 and may provide biomarkers to identify subsets of patients with pulmonary disease driven by “Th2-high” biology.

Authors

Kristen M. Glisinski, Adam J. Schlobohm, Sarah V. Paramore, Anastasiya Birukova, M. Arthur Moseley, Matthew W. Foster, Christina E. Barkauskas

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts