Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma
Bo Tu, … , Sonal Gupta, Haoqiang Ying
Bo Tu, … , Sonal Gupta, Haoqiang Ying
Published September 26, 2019
Citation Information: JCI Insight. 2019;4(21):e130811. https://doi.org/10.1172/jci.insight.130811.
View: Text | PDF
Research Article Genetics Oncology

YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma

  • Text
  • PDF
Abstract

Transcriptomic profiling classifies pancreatic ductal adenocarcinoma (PDAC) into several molecular subtypes with distinctive histological and clinical characteristics. However, little is known about the molecular mechanisms that define each subtype and their correlation with clinical outcome. Mutant KRAS is the most prominent driver in PDAC, present in over 90% of tumors, but the dependence of tumors on oncogenic KRAS signaling varies between subtypes. In particular, the squamous subtype is relatively independent of oncogenic KRAS signaling and typically displays much more aggressive clinical behavior versus the progenitor subtype. Here, we identified that yes-associated protein 1 (YAP1) activation is enriched in the squamous subtype and associated with poor prognosis. Activation of YAP1 in progenitor subtype cancer cells profoundly enhanced malignant phenotypes and transformed progenitor subtype cells into squamous subtype. Conversely, depletion of YAP1 specifically suppressed tumorigenicity of squamous subtype PDAC cells. Mechanistically, we uncovered a significant positive correlation between WNT5A expression and YAP1 activity in human PDAC and demonstrated that WNT5A overexpression led to YAP1 activation and recapitulated a YAP1-dependent but Kras-independent phenotype of tumor progression and maintenance. Thus, our study identifies YAP1 oncogene as a major driver of squamous subtype PDAC and uncovers the role of WNT5A in driving PDAC malignancy through activation of the YAP pathway.

Authors

Bo Tu, Jun Yao, Sammy Ferri-Borgogno, Jun Zhao, Shujuan Chen, Qiuyun Wang, Liang Yan, Xin Zhou, Cihui Zhu, Seungmin Bang, Qing Chang, Christopher A. Bristow, Ya’an Kang, Hongwu Zheng, Huamin Wang, Jason B. Fleming, Michael Kim, Timothy P. Heffernan, Giulio F. Draetta, Duojia Pan, Anirban Maitra, Wantong Yao, Sonal Gupta, Haoqiang Ying

×

Full Text PDF

Download PDF (11.65 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts