Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Transfers
  • Current issue
  • Past issues
  • By specialty
  • Contact
  • Recently published
  • Technical Advances
  • Clinical Medicine
  • Editorials
  • Top read articles

Usage Information

Dysregulated claudin-5 cycling in the inner retina causes retinal pigment epithelial cell atrophy
Natalie Hudson, … , Sarah L. Doyle, Matthew Campbell
Natalie Hudson, … , Sarah L. Doyle, Matthew Campbell
Published August 8, 2019
Citation Information: JCI Insight. 2019;4(15):e130273. https://doi.org/10.1172/jci.insight.130273.
View: Text | PDF
Categories: Research Article Ophthalmology Vascular biology

Dysregulated claudin-5 cycling in the inner retina causes retinal pigment epithelial cell atrophy

  • Text
  • PDF
Abstract

Age-related macular degeneration (AMD) is the leading cause of central retinal vision loss worldwide, with an estimated 1 in 10 people over the age of 55 showing early signs of the condition. There are currently no forms of therapy available for the end stage of dry AMD, geographic atrophy (GA). Here, we show that the inner blood-retina barrier (iBRB) is highly dynamic and may play a contributory role in GA development. We have discovered that the gene CLDN5, which encodes claudin-5, a tight junction protein abundantly expressed at the iBRB, is regulated by BMAL1 and the circadian clock. Persistent suppression of claudin-5 expression in mice exposed to a cholesterol-enriched diet induced striking retinal pigment epithelium (RPE) cell atrophy, and persistent targeted suppression of claudin-5 in the macular region of nonhuman primates induced RPE cell atrophy. Moreover, fundus fluorescein angiography in human and nonhuman primate subjects showed increased retinal vascular permeability in the evening compared with the morning. These findings implicate an inner retina–derived component in the early pathophysiological changes observed in AMD, and we suggest that restoring the integrity of the iBRB may represent a novel therapeutic target for the prevention and treatment of GA secondary to dry AMD.

Authors

Natalie Hudson, Lucia Celkova, Alan Hopkins, Chris Greene, Federica Storti, Ema Ozaki, Erin Fahey, Sofia Theodoropoulou, Paul F. Kenna, Marian M. Humphries, Annie M. Curtis, Eleanor Demmons, Akeem Browne, Shervin Liddie, Matthew S. Lawrence, Christian Grimm, Mark T. Cahill, Pete Humphries, Sarah L. Doyle, Matthew Campbell

×

Usage data is cumulative from August 2019 through December 2019.

Usage JCI PMC
Text version 1,683 0
PDF 381 0
Figure 362 0
Supplemental data 68 0
Citation downloads 31 0
Totals 2,525 0
Total Views 2,525

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI Insight:
Copyright © 2019 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts