Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Maternal erythrocyte ENT1–mediated AMPK activation counteracts placental hypoxia and supports fetal growth
Seisuke Sayama, Anren Song, Benjamin C. Brown, Jacob Couturier, Xiaoli Cai, Ping Xu, Changhan Chen, Yangxi Zheng, Takayuki Iriyama, Baha Sibai, Monica Longo, Rodney E. Kellems, Angelo D’Alessandro, Yang Xia
Seisuke Sayama, Anren Song, Benjamin C. Brown, Jacob Couturier, Xiaoli Cai, Ping Xu, Changhan Chen, Yangxi Zheng, Takayuki Iriyama, Baha Sibai, Monica Longo, Rodney E. Kellems, Angelo D’Alessandro, Yang Xia
View: Text | PDF
Research Article Development Hematology

Maternal erythrocyte ENT1–mediated AMPK activation counteracts placental hypoxia and supports fetal growth

  • Text
  • PDF
Abstract

Insufficient O2 supply is frequently associated with fetal growth restriction (FGR), a leading cause of perinatal mortality and morbidity. Although the erythrocyte is the most abundant and only cell type to deliver O2 in our body, its function and regulatory mechanism in FGR remain unknown. Here, we report that genetic ablation of mouse erythrocyte equilibrative nucleoside transporter 1 (eENT1) in dams, but not placentas or fetuses, results in FGR. Unbiased high-throughput metabolic profiling coupled with in vitro and in vivo flux analyses with isotopically labeled tracers led us to discover that maternal eENT1–dependent adenosine uptake is critical in activating AMPK by controlling the AMP/ATP ratio and its downstream target, bisphosphoglycerate mutase (BPGM); in turn, BPGM mediates 2,3-BPG production, which enhances O2 delivery to maintain placental oxygenation. Mechanistically and functionally, we revealed that genetic ablation of maternal eENT1 increases placental HIF-1α; preferentially reduces placental large neutral aa transporter 1 (LAT1) expression, activity, and aa supply; and induces FGR. Translationally, we revealed that elevated HIF-1α directly reduces LAT1 gene expression in cultured human trophoblasts. We demonstrate the importance and molecular insight of maternal eENT1 in fetal growth and open up potentially new diagnostic and therapeutic possibilities for FGR.

Authors

Seisuke Sayama, Anren Song, Benjamin C. Brown, Jacob Couturier, Xiaoli Cai, Ping Xu, Changhan Chen, Yangxi Zheng, Takayuki Iriyama, Baha Sibai, Monica Longo, Rodney E. Kellems, Angelo D’Alessandro, Yang Xia

×

Figure 5

Placenta showing overexpression of HIF-1α in E1FE dams and metabolomic screening result from EPO and E1FE placenta.

Options: View larger image (or click on image) Download as PowerPoint
Placenta showing overexpression of HIF-1α in E1FE dams and metabolomic s...
(A) The placentas from E1FE show increase of HIF-1α expression in the spongiotrophoblast zone. Scale bars: 200 μm (top 2 rows) and 50 μm (bottom row). L, labyrinth layer; S, spongiotrophoblast layer. (B) Pathways related to amino acid pathways are the most affected pathway in the E1FE placenta, compared with control. (C) Placentas from E1FE dams showed reduction in amino acids, whereas they were increased in plasma from E1FE dams compared with control. (D and E) Series of aa in the placenta were substantially reduced, whereas their levels were substantially elevated in maternal plasma. Values represent the mean ± SEM.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts