Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Genomic analysis of benign prostatic hyperplasia implicates cellular relandscaping in disease pathogenesis
Lance W. Middleton, Zhewei Shen, Sushama Varma, Anna S. Pollack, Xue Gong, Shirley Zhu, Chunfang Zhu, Joseph W. Foley, Sujay Vennam, Robert T. Sweeney, Karen Tu, Jewison Biscocho, Okyaz Eminaga, Rosalie Nolley, Robert Tibshirani, James D. Brooks, Robert B. West, Jonathan R. Pollack
Lance W. Middleton, Zhewei Shen, Sushama Varma, Anna S. Pollack, Xue Gong, Shirley Zhu, Chunfang Zhu, Joseph W. Foley, Sujay Vennam, Robert T. Sweeney, Karen Tu, Jewison Biscocho, Okyaz Eminaga, Rosalie Nolley, Robert Tibshirani, James D. Brooks, Robert B. West, Jonathan R. Pollack
View: Text | PDF
Research Article Cell biology Oncology

Genomic analysis of benign prostatic hyperplasia implicates cellular relandscaping in disease pathogenesis

  • Text
  • PDF
Abstract

Benign prostatic hyperplasia (BPH) is the most common cause of lower urinary tract symptoms in men. Current treatments target prostate physiology rather than BPH pathophysiology and are only partially effective. Here, we applied next-generation sequencing to gain insight into BPH. By RNA-Seq, we uncovered transcriptional heterogeneity among BPH cases, where a 65-gene BPH stromal signature correlated with symptom severity. Stromal signaling molecules bone morphogenetic protein 5 (BMP5) and CXC chemokine ligand 13 (CXCL13) were enriched in BPH while estrogen-regulated pathways were depleted. Notably, BMP5’s addition to cultured prostatic myofibroblasts altered their expression profile toward a BPH profile that included the BPH stromal signature. RNA-Seq also suggested an altered cellular milieu in BPH, which we verified by immunohistochemistry and single-cell RNA-Seq. In particular, BPH tissues exhibited enrichment of myofibroblast subsets but also depletion of neuroendocrine cells and an estrogen receptor–positive fibroblast cell type residing near the epithelium. By whole-exome sequencing, we uncovered somatic single-nucleotide variants in BPH, of uncertain pathogenic significance but indicative of clonal cell expansions. Thus, genomic characterization of BPH has identified a clinically relevant stromal signature and new candidate disease pathways (including a likely role for BMP5 signaling) and reveals BPH to be not merely a hyperplasia, but rather a fundamental relandscaping of cell types.

Authors

Lance W. Middleton, Zhewei Shen, Sushama Varma, Anna S. Pollack, Xue Gong, Shirley Zhu, Chunfang Zhu, Joseph W. Foley, Sujay Vennam, Robert T. Sweeney, Karen Tu, Jewison Biscocho, Okyaz Eminaga, Rosalie Nolley, Robert Tibshirani, James D. Brooks, Robert B. West, Jonathan R. Pollack

×

Figure 4

IHC on prostate TMA identifies altered ESR1+ cell subset in BPH.

Options: View larger image (or click on image) Download as PowerPoint
IHC on prostate TMA identifies altered ESR1+ cell subset in BPH.
(A–D) H...
(A–D) Hematoxylin and eosin stains of representative normal prostate and BPH-matched pair. Original magnifications, ×200 and ×800 (insets). (E–H) CHGA immunostaining (marker of neuroendocrine cells) shown for same case; note depletion of neuroendocrine cells in BPH. (I) CHGA IHC scores across all TMA cases (n = 22 normal and n = 21 BPH). Mean (red) and SD (blue) shown; P values generated from 2-tailed Student’s t test. (J–M) ESR1 immunostaining shown for same case; note depletion of periglandular ESR1+ fibroblast-like cells in BPH. (N) ESR1 IHC scores across all TMA cases (n = 21 normal and n = 20 BPH).

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts