Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Noncovalent inhibitors reveal BTK gatekeeper and auto-inhibitory residues that control its transforming activity
Shenqiu Wang, … , Anas Younes, Hans-Guido Wendel
Shenqiu Wang, … , Anas Younes, Hans-Guido Wendel
Published June 20, 2019
Citation Information: JCI Insight. 2019;4(12):e127566. https://doi.org/10.1172/jci.insight.127566.
View: Text | PDF
Research Article Hematology Oncology

Noncovalent inhibitors reveal BTK gatekeeper and auto-inhibitory residues that control its transforming activity

  • Text
  • PDF
Abstract

Inhibition of Bruton tyrosine kinase (BTK) is a breakthrough therapy for certain B cell lymphomas and B cell chronic lymphatic leukemia. Covalent BTK inhibitors (e.g., ibrutinib) bind to cysteine C481, and mutations of this residue confer clinical resistance. This has led to the development of noncovalent BTK inhibitors that do not require binding to cysteine C481. These new compounds are now entering clinical trials. In a systematic BTK mutagenesis screen, we identify residues that are critical for the activity of noncovalent inhibitors. These include a gatekeeper residue (T474) and mutations in the kinase domain. Strikingly, co-occurrence of gatekeeper and kinase domain lesions (L512M, E513G, F517L, L547P) in cis results in a 10- to 15-fold gain of BTK kinase activity and de novo transforming potential in vitro and in vivo. Computational BTK structure analyses reveal how these lesions disrupt an intramolecular mechanism that attenuates BTK activation. Our findings anticipate clinical resistance mechanisms to a new class of noncovalent BTK inhibitors and reveal intramolecular mechanisms that constrain BTK’s transforming potential.

Authors

Shenqiu Wang, Sayan Mondal, Chunying Zhao, Marjan Berishaj, Phani Ghanakota, Connie Lee Batlevi, Ahmet Dogan, Venkatraman E. Seshan, Robert Abel, Michael R. Green, Anas Younes, Hans-Guido Wendel

×

Figure 5

Sensitized screen for transforming BTK mutations in the context of the BTKT474M gatekeeper allele.

Options: View larger image (or click on image) Download as PowerPoint
Sensitized screen for transforming BTK mutations in the context of the B...
(A) FACS analysis of Ba/F3 cells shows enrichment of GFP (coexpressed with the mutant BTKT474M library) after IL-3 starvation. (B) Sequence analysis of 156 colonies from Ba/F3 cells indicates frequency and location of secondary mutations in the context of the T474M mutation. (C) Confirmation of IL-3–independent growth for the indicated BTK mutants coexpressed with GFP and measured relative to nontransduced parental cells (indicated as percentage of GFP-positive cells). (D) FACS analysis of BTK autophosphorylation (Y223) in HEK293T cells expressing the indicated BTK alleles. Data are represented as mean ± SD from 2 independent experiments. *P < 0.05 vs. BTK_T474M determined by Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts