Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity
Siân R. Kitcher, … , Guy P. Richardson, Corné J. Kros
Siân R. Kitcher, … , Guy P. Richardson, Corné J. Kros
Published August 8, 2019
Citation Information: JCI Insight. 2019;4(15):e126764. https://doi.org/10.1172/jci.insight.126764.
View: Text | PDF
Research Article Neuroscience Therapeutics

ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity

  • Text
  • PDF
Abstract

Aminoglycoside (AG) antibiotics are widely used to prevent life-threatening infections, and cisplatin is used in the treatment of various cancers, but both are ototoxic and result in loss of sensory hair cells from the inner ear. ORC-13661 is a new drug that was derived from PROTO-1, a compound first identified as protective in a large-scale screen utilizing hair cells in the lateral line organs of zebrafish larvae. Here, we demonstrate, in zebrafish larvae and in mouse cochlear cultures, that ORC-13661 provides robust protection of hair cells against both ototoxins, the AGs and cisplatin. ORC-13661 also prevents both hearing loss in a dose-dependent manner in rats treated with amikacin and the loading of neomycin-Texas Red into lateral line hair cells. In addition, patch-clamp recordings in mouse cochlear cultures reveal that ORC-13661 is a high-affinity permeant blocker of the mechanoelectrical transducer (MET) channel in outer hair cells, suggesting that it may reduce the toxicity of AGs by directly competing for entry at the level of the MET channel and of cisplatin by a MET-dependent mechanism. ORC-13661 is therefore a promising and versatile protectant that reversibly blocks the hair cell MET channel and operates across multiple species and toxins.

Authors

Siân R. Kitcher, Nerissa K. Kirkwood, Esra D. Camci, Patricia Wu, Robin M. Gibson, Van A. Redila, Roberto Ogelman, Julian A. Simon, Edwin W. Rubel, David W. Raible, Guy P. Richardson, Corné J. Kros

×

Figure 9

High doses of ORC-13661 alone do not affect hearing in rats.

Options: View larger image (or click on image) Download as PowerPoint
High doses of ORC-13661 alone do not affect hearing in rats.
Hearing thr...
Hearing threshold shifts in rats that were orally administered ORC-13661 (A, 100 mg/kg; B, 200 mg/kg) or saline (C) are shown. Auditory brainstem response (ABR) thresholds were determined immediately after dosing and after intervals of 1 hour, 5 hours, and 24 hours for 100 mg/kg dosing and 1 hour, 5 hours, 24 hours, and 20 days for 200 mg/kg dosing. n = 3 for each dosage group at 1 hours, 5 hours, and 24 hours; n = 2 for 20-day group; and n = 2 for saline group. Mean hearing threshold shifts compared with thresholds immediately after treatment are reported ± 1 SEM; positive values indicate increasing levels of hearing loss. For statistical analysis 2-way ANOVA was used. No consistent or statistically significant hearing threshold shifts were observed in any of the conditions tested.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts