Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Deficiency of Socs3 leads to brain-targeted experimental autoimmune encephalomyelitis via enhanced neutrophil activation and ROS production
Zhaoqi Yan, … , Hongwei Qin, Etty N. Benveniste
Zhaoqi Yan, … , Hongwei Qin, Etty N. Benveniste
Published April 2, 2019
Citation Information: JCI Insight. 2019;4(9):e126520. https://doi.org/10.1172/jci.insight.126520.
View: Text | PDF
Research Article Inflammation

Deficiency of Socs3 leads to brain-targeted experimental autoimmune encephalomyelitis via enhanced neutrophil activation and ROS production

  • Text
  • PDF
Abstract

Dysregulation of the JAK/STAT signaling pathway is associated with multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). Suppressors of cytokine signaling (SOCS) negatively regulate the JAK/STAT pathway. We previously reported a severe, brain-targeted, atypical form of EAE in mice lacking Socs3 in myeloid cells (Socs3ΔLysM), and that this atypical EAE is associated with cerebellar neutrophil infiltration. There is emerging evidence that neutrophils are detrimental in the pathology of MS/EAE; however, their exact function is unclear. Here we demonstrate that neutrophils from the cerebellum of Socs3ΔLysM mice show a hyperactivated phenotype with excessive production of reactive oxygen species (ROS) at the peak of EAE. Neutralization of ROS in vivo delayed the onset and reduced severity of atypical EAE. Mechanistically, Socs3-deficient neutrophils exhibited enhanced signal transducer and activator of transcription 3 (STAT3) activation, a hyperactivated phenotype in response to granulocyte colony–stimulating factor (G-CSF), and upon G-CSF priming, increased ROS production. Neutralization of G-CSF in vivo significantly reduced the incidence and severity of the atypical EAE phenotype. Overall, our work elucidates that hypersensitivity of G-CSF/STAT3 signaling in Socs3ΔLysM mice leads to atypical EAE by enhanced neutrophil activation and increased oxidative stress, which may explain the detrimental role of G-CSF in MS patients.

Authors

Zhaoqi Yan, Wei Yang, Luke Parkitny, Sara A. Gibson, Kevin S. Lee, Forrest Collins, Jessy S. Deshane, Wayne Cheng, Amy S. Weinmann, Hairong Wei, Hongwei Qin, Etty N. Benveniste

×

Full Text PDF | Download (4.21 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts