Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Myelin repair stimulated by CNS-selective thyroid hormone action
Meredith D. Hartley, … , Dennis Bourdette, Thomas S. Scanlan
Meredith D. Hartley, … , Dennis Bourdette, Thomas S. Scanlan
Published April 18, 2019
Citation Information: JCI Insight. 2019;4(8):e126329. https://doi.org/10.1172/jci.insight.126329.
View: Text | PDF
Research Article Endocrinology Neuroscience

Myelin repair stimulated by CNS-selective thyroid hormone action

  • Text
  • PDF
Abstract

Oligodendrocyte processes wrap axons to form neuroprotective myelin sheaths, and damage to myelin in disorders, such as multiple sclerosis (MS), leads to neurodegeneration and disability. There are currently no approved treatments for MS that stimulate myelin repair. During development, thyroid hormone (TH) promotes myelination through enhancing oligodendrocyte differentiation; however, TH itself is unsuitable as a remyelination therapy due to adverse systemic effects. This problem is overcome with selective TH agonists, sobetirome and a CNS-selective prodrug of sobetirome called Sob-AM2. We show here that TH and sobetirome stimulated remyelination in standard gliotoxin models of demyelination. We then utilized a genetic mouse model of demyelination and remyelination, in which we employed motor function tests, histology, and MRI to demonstrate that chronic treatment with sobetirome or Sob-AM2 leads to significant improvement in both clinical signs and remyelination. In contrast, chronic treatment with TH in this model inhibited the endogenous myelin repair and exacerbated disease. These results support the clinical investigation of selective CNS-penetrating TH agonists, but not TH, for myelin repair.

Authors

Meredith D. Hartley, Tania Banerji, Ian J. Tagge, Lisa L. Kirkemo, Priya Chaudhary, Evan Calkins, Danielle Galipeau, Mitra D. Shokat, Margaret J. DeBell, Shelby Van Leuven, Hannah Miller, Gail Marracci, Edvinas Pocius, Tapasree Banerji, Skylar J. Ferrara, J. Matthew Meinig, Ben Emery, Dennis Bourdette, Thomas S. Scanlan

×

Usage data is cumulative from October 2022 through October 2023.

Usage JCI PMC
Text version 973 565
PDF 113 88
Figure 241 10
Supplemental data 37 2
Citation downloads 35 0
Totals 1,399 665
Total Views 2,064
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts