Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Antiinflammatory activity of ANGPTL4 facilitates macrophage polarization to induce cardiac repair
Dong Im Cho, … , Yong Sook Kim, Youngkeun Ahn
Dong Im Cho, … , Yong Sook Kim, Youngkeun Ahn
Published August 22, 2019
Citation Information: JCI Insight. 2019;4(16):e125437. https://doi.org/10.1172/jci.insight.125437.
View: Text | PDF
Research Article Cardiology Inflammation

Antiinflammatory activity of ANGPTL4 facilitates macrophage polarization to induce cardiac repair

  • Text
  • PDF
Abstract

Mesenchymal stem cells (MSCs) can suppress pathological inflammation. However, the mechanisms underlying the association between MSCs and inflammation remain unclear. Under coculture conditions with macrophages, MSCs highly expressed angiopoietin-like 4 (ANGPTL4) to blunt the polarization of macrophages toward the proinflammatory phenotype. ANGPTL4-deficient MSCs failed to inhibit the inflammatory macrophage phenotype. In inflammation-related animal models, the injection of coculture medium or ANGPTL4 protein increased the antiinflammatory macrophages in both peritonitis and myocardial infarction. In particular, cardiac function and pathology were markedly improved by ANGPTL4 treatment. We found that retinoic acid–related orphan receptor α (RORα) was increased by inflammatory mediators, such as IL-1β, and bound to ANGPTL4 promoter in MSCs. Collectively, RORα-mediated ANGPTL4 induction was shown to contribute to the antiinflammatory activity of MSCs against macrophages under pathological conditions. This study suggests that the capability of ANGPTL4 to induce tissue repair is a promising opportunity for safe stem cell–free regeneration therapy from a translational perspective.

Authors

Dong Im Cho, Hye-jin Kang, Ju Hee Jeon, Gwang Hyeon Eom, Hyang Hee Cho, Mi Ra Kim, Meeyoung Cho, Hye-yun Jeong, Hyen Chung Cho, Moon Hwa Hong, Yong Sook Kim, Youngkeun Ahn

×

Full Text PDF

Download PDF (12.84 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts