Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B
Benjamin J. Frisch, … , Michael W. Becker, Laura M. Calvi
Benjamin J. Frisch, … , Michael W. Becker, Laura M. Calvi
Published April 18, 2019
Citation Information: JCI Insight. 2019;4(10):e124213. https://doi.org/10.1172/jci.insight.124213.
View: Text | PDF
Research Article Aging Hematology

Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B

  • Text
  • PDF
Abstract

The bone marrow microenvironment contributes to the regulation of hematopoietic stem cell (HSC) function, though its role in age-associated lineage skewing is poorly understood. Here we show that dysfunction of aged marrow macrophages (Mφs) directs HSC platelet bias. Mφs from the marrow of aged mice and humans exhibited an activated phenotype, with increased expression of inflammatory signals. Aged marrow Mφs also displayed decreased phagocytic function. Senescent neutrophils, typically cleared by marrow Mφs, were markedly increased in aged mice, consistent with functional defects in Mφ phagocytosis and efferocytosis. In aged mice, interleukin-1B (IL-1B) was elevated in the bone marrow, and caspase-1 activity, which can process pro–IL-1B, was increased in marrow Mφs and neutrophils. Mechanistically, IL-1B signaling was necessary and sufficient to induce a platelet bias in HSCs. In young mice, depletion of phagocytic cell populations or loss of the efferocytic receptor Axl expanded platelet-biased HSCs. Our data support a model wherein increased inflammatory signals and decreased phagocytic function of aged marrow Mφs induce the acquisition of platelet bias in aged HSCs. This work highlights the instructive role of Mφs and IL-1B in the age-associated lineage skewing of HSCs, and reveals the therapeutic potential of their manipulation as antigeronic targets.

Authors

Benjamin J. Frisch, Corey M. Hoffman, Sarah E. Latchney, Mark W. LaMere, Jason Myers, John Ashton, Allison J. Li, Jerry Saunders II, James Palis, Archibald S. Perkins, Amanda McCabe, Julianne N.P. Smith, Kathleen E. McGrath, Fatima Rivera-Escalera, Andrew McDavid, Jane L. Liesveld, Vyacheslav A. Korshunov, Michael R. Elliott, Katherine C. MacNamara, Michael W. Becker, Laura M. Calvi

×

Full Text PDF | Download (1.70 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts