Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
Tofacitinib enhances delivery of antibody-based therapeutics to tumor cells through modulation of inflammatory cells
Nathan Simon, … , Christine Alewine, David FitzGerald
Nathan Simon, … , Christine Alewine, David FitzGerald
Published February 5, 2019
Citation Information: JCI Insight. 2019;4(5):e123281. https://doi.org/10.1172/jci.insight.123281.
View: Text | PDF
Research Article Oncology Therapeutics

Tofacitinib enhances delivery of antibody-based therapeutics to tumor cells through modulation of inflammatory cells

  • Text
  • PDF
Abstract

The routes by which antibody-based therapeutics reach malignant cells are poorly defined. Tofacitinib, an FDA-approved JAK inhibitor, reduced tumor-associated inflammatory cells and allowed increased delivery of antibody-based agents to malignant cells. Alone, tofacitinib exhibited no antitumor activity, but combinations with immunotoxins or an antibody-drug conjugate resulted in increased antitumor responses. Quantification using flow cytometry revealed that antibody-based agents accumulated in malignant cells at higher percentages following tofacitinib treatment. Profiling of tofacitinib-treated tumor-bearing mice indicated that cytokine transcripts and various proteins involved in chemotaxis were reduced compared with vehicle-treated mice. Histological analysis revealed significant changes to the composition of the tumor microenvironment, with reductions in monocytes, macrophages, and neutrophils. Tumor-associated inflammatory cells contributed to non-target uptake of antibody-based therapeutics, with mice treated with tofacitinib showing decreased accumulation of therapeutics in intratumoral inflammatory cells and increased delivery to malignant cells. The present findings serve as a rationale for conducting trials where short-term treatments with tofacitinib could be administered in combination with antibody-based therapies.

Authors

Nathan Simon, Antonella Antignani, Stephen M. Hewitt, Massimo Gadina, Christine Alewine, David FitzGerald

×

Full Text PDF | Download (750.67 KB)


Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts