Abstract

Molecular mechanisms underlying the cancer stroma in metastasis need further exploration. Here, we discovered that cancer-associated fibroblasts (CAFs) produced high levels of IL-33 that acted on tumor-associated macrophages (TAMs), causing them to undergo the M1 to M2 transition. Genomic profiling of metastasis-related genes in the IL-33–stimulated TAMs showed a >200-fold increase of MMP9. Signaling analysis demonstrated the IL-33-ST2-NF-κB-MMP9-laminin pathway that governed tumor stroma–mediated metastasis. In mouse and human fibroblast-rich pancreatic cancers, genetic deletion of IL-33, ST2, or MMP9 markedly blocked metastasis. Pharmacological inhibition of NF-κB and MMP9 also blocked cancer metastasis. Deletion of IL-33, ST2, or MMP9 restored laminin, a key basement membrane component associated with tumor microvessels. Together, our data provide mechanistic insights on the IL-33-NF-κB-MMP9-laminin axis that mediates the CAF-TAM–committed cancer metastasis. Thus, targeting the CAF-TAM-vessel axis provides an outstanding therapeutic opportunity for cancer treatment.

Authors

Patrik Andersson, Yunlong Yang, Kayoko Hosaka, Yin Zhang, Carina Fischer, Harald Braun, Shuzhen Liu, Guohua Yu, Shihai Liu, Rudi Beyaert, Mayland Chang, Qi Li, Yihai Cao

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement