Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Mucosal-associated invariant and γδ T cell subsets respond to initial Mycobacterium tuberculosis infection
Charles Kyriakos Vorkas, … , Daniel W. Fitzgerald, Michael S. Glickman
Charles Kyriakos Vorkas, … , Daniel W. Fitzgerald, Michael S. Glickman
Published October 4, 2018
Citation Information: JCI Insight. 2018;3(19):e121899. https://doi.org/10.1172/jci.insight.121899.
View: Text | PDF
Research Article Immunology Infectious disease

Mucosal-associated invariant and γδ T cell subsets respond to initial Mycobacterium tuberculosis infection

  • Text
  • PDF
Abstract

Innate immune responses that control early Mtb infection are poorly understood, but understanding these responses may inform vaccination and immunotherapy strategies. Innate T cells that respond to conserved bacterial ligands such as mucosal-associated invariant T (MAIT) and γδ T cells are prime candidates to mediate these early innate responses but have not been examined in subjects who have been recently exposed to Mtb. We recruited a cohort living in the same household with an active tuberculosis (TB) case and examined the abundance and functional phenotypes of 3 innate T cell populations reactive to M. tuberculosis: γδ T, invariant NK T (iNKT), and MAIT cells. Both MAIT and γδ T cells from subjects with Mtb exposure display ex vivo phenotypes consistent with recent activation. However, both MAIT and γδ T cell subsets have distinct response profiles, with CD4+ MAIT and γδ T cells accumulating after infection. Examination of exposed but uninfected contacts demonstrates that resistance to initial infection is accompanied by robust MAIT cell CD25 expression and granzyme B production coupled with a depressed CD69 and IFNγ response. Finally, we demonstrate that MAIT cell abundance and function correlate with the abundance of specific gut microbes, suggesting that responses to initial infection may be modulated by the intestinal microbiome.

Authors

Charles Kyriakos Vorkas, Matthew F. Wipperman, Kelin Li, James Bean, Shakti K. Bhattarai, Matthew Adamow, Phillip Wong, Jeffrey Aubé, Marc Antoine Jean Juste, Vanni Bucci, Daniel W. Fitzgerald, Michael S. Glickman

×

Full Text PDF | Download (4.87 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts