Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle
Jennifer Q. Kwong, Jiuzhou Huo, Michael J. Bround, Justin G. Boyer, Jennifer A. Schwanekamp, Nasab Ghazal, Joshua T. Maxwell, Young C. Jang, Zaza Khuchua, Kevin Shi, Donald M. Bers, Jennifer Davis, Jeffery D. Molkentin
Jennifer Q. Kwong, Jiuzhou Huo, Michael J. Bround, Justin G. Boyer, Jennifer A. Schwanekamp, Nasab Ghazal, Joshua T. Maxwell, Young C. Jang, Zaza Khuchua, Kevin Shi, Donald M. Bers, Jennifer Davis, Jeffery D. Molkentin
View: Text | PDF
Research Article Cardiology Muscle biology

The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle

  • Text
  • PDF
Abstract

The mitochondrial Ca2+ uniporter (MCU) complex mediates acute mitochondrial Ca2+ influx. In skeletal muscle, MCU links Ca2+ signaling to energy production by directly enhancing the activity of key metabolic enzymes in the mitochondria. Here, we examined the role of MCU in skeletal muscle development and metabolic function by generating mouse models for the targeted deletion of Mcu in embryonic, postnatal, and adult skeletal muscle. Loss of Mcu did not affect muscle growth and maturation or otherwise cause pathology. Skeletal muscle–specific deletion of Mcu in mice also did not affect myofiber intracellular Ca2+ handling, but it did inhibit acute mitochondrial Ca2+ influx and mitochondrial respiration stimulated by Ca2+, resulting in reduced acute exercise performance in mice. However, loss of Mcu also resulted in enhanced muscle performance under conditions of fatigue, with a preferential shift toward fatty acid metabolism, resulting in reduced body fat with aging. Together, these results demonstrate that MCU-mediated mitochondrial Ca2+ regulation underlies skeletal muscle fuel selection at baseline and under enhanced physiological demands, which affects total homeostatic metabolism.

Authors

Jennifer Q. Kwong, Jiuzhou Huo, Michael J. Bround, Justin G. Boyer, Jennifer A. Schwanekamp, Nasab Ghazal, Joshua T. Maxwell, Young C. Jang, Zaza Khuchua, Kevin Shi, Donald M. Bers, Jennifer Davis, Jeffery D. Molkentin

×

Full Text PDF

Download PDF (3.55 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts