Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Chronic infection stunts macrophage heterogeneity and disrupts immune-mediated myogenesis
Richard M. Jin, Jordan Warunek, Elizabeth A. Wohlfert
Richard M. Jin, Jordan Warunek, Elizabeth A. Wohlfert
View: Text | PDF
Research Article Infectious disease Inflammation

Chronic infection stunts macrophage heterogeneity and disrupts immune-mediated myogenesis

  • Text
  • PDF
Abstract

The robust regenerative potential of skeletal muscle is imperative for the maintenance of tissue function across a host of potential insults including exercise, infection, and trauma. The highly coordinated action of multiple immune populations, especially macrophages, plays an indispensable role in guiding this reparative program. However, it remains unclear how skeletal muscle repair proceeds in a chronically inflamed setting, such as infection, where an active immune response is already engaged. To address this question, we used a cardiotoxin injury model to challenge the reparative potential of chronically infected muscle. Compared with regenerating naive skeletal muscle, infected skeletal muscle exhibited multiple indicators of delayed muscle repair including a divergent morphologic response to injury and dysregulated expression of myogenic regulatory factors. Further, using both flow cytometric and single-cell RNA sequencing approaches, we show that reduced macrophage heterogeneity due to delayed emergence of restorative subsets underlies dysfunctional tissue repair during chronic infection. Our findings highlight how the preexisting inflammatory environment within tissue alters reparative immunity and ultimately the quality of tissue regeneration.

Authors

Richard M. Jin, Jordan Warunek, Elizabeth A. Wohlfert

×

Figure 2

Molecular analysis of myogenic pathway following acute sterile injury in naive and chronically infected muscle.

Options: View larger image (or click on image) Download as PowerPoint
Molecular analysis of myogenic pathway following acute sterile injury in...
(A) Whole muscle mRNA expression of muscle-repair associated genes, Pax7, Pax3, Igf1, Myf5, MyoD, and Myog relative to Gapdh relative to naive uninjured skeletal muscle throughout injury summarized as a heatmap (left) (n = 8 mice/group/day) and graphical summaries of gene expression at day 4 (right) (n = 8 mice/group). Data are cumulative of 2 independent experiments. Statistics performed on log-transformed values of relative expression. (B) Absolute number of muscle satellite cells (MuSCs: CD31–CD45–Sca1–CD106+) in naive and infected mice at 0, 10, and 30 days after infection. (C) Absolute number (right) and frequency of proliferating (Ki67+) MuSCs by flow cytometry in naive and infected muscle on days 0, 10, and 30 after CTX-induced injury. Error bars represent SD. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by 2-tailed Student’s t test (A), ANOVA with Tukey’s multiple-comparisons test (B and C, left), or Kruskal-Wallis with Dunnett’s multiple-comparisons test (C, right).

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts