Triple-negative breast cancer (TNBC) has few therapeutic options, and alternative approaches are urgently needed. Stimulator of IFN genes (STING) is becoming an exciting target for therapeutic adjuvants. However, STING resides inside the cell, and the intracellular delivery of CDNs, such as cGAMP, is required for the optimal activation of STING. We show that liposomal nanoparticle-delivered cGAMP (cGAMP-NP) activates STING more effectively than soluble cGAMP. These particles induce innate and adaptive host immune responses to preexisting tumors in both orthotopic and genetically engineered models of basal-like TNBC. cGAMP-NPs also reduce melanoma tumor load, with limited responsivity to anti–PD-L1. Within the tumor microenvironment, cGAMP-NPs direct both mouse and human macrophages (M), reprograming from protumorigenic M2-like phenotype toward M1-like phenotype; enhance MHC and costimulatory molecule expression; reduce M2 biomarkers; increase IFN-γ–producing T cells; augment tumor apoptosis; and increase CD4+ and CD8+ T cell infiltration. Activated T cells are required for tumor suppression, as their depletion reduces antitumor activity. Importantly, cGAMP-NPs prevent the formation of secondary tumors, and a single dose is sufficient to inhibit TNBC. These data suggest that a minimal system comprised of cGAMP-NP alone is sufficient to modulate the tumor microenvironment to effectively control PD-L1–insensitive TNBC.
Ning Cheng, Rebekah Watkins-Schulz, Robert D. Junkins, Clément N. David, Brandon M. Johnson, Stephanie A. Montgomery, Kevin J. Peine, David B. Darr, Hong Yuan, Karen P. McKinnon, Qi Liu, Lei Miao, Leaf Huang, Eric M. Bachelder, Kristy M. Ainslie, Jenny P-Y Ting
Usage data is cumulative from December 2024 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 1,331 | 438 |
| 138 | 57 | |
| Figure | 568 | 5 |
| Supplemental data | 258 | 7 |
| Citation downloads | 139 | 0 |
| Totals | 2,434 | 507 |
| Total Views | 2,941 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.