In human myocarditis and its sequela dilated cardiomyopathy (DCM), the mechanisms and immune phenotype governing disease and subsequent heart failure are not known. Here, we identified a Th17 cell immunophenotype of human myocarditis/DCM with elevated CD4+IL17+ T cells and Th17-promoting cytokines IL-6, TGF-β, and IL-23 as well as GM-CSF–secreting CD4+ T cells. The Th17 phenotype was linked with the effects of cardiac myosin on CD14+ monocytes, TLR2, and heart failure. Persistent heart failure was associated with high percentages of IL-17–producing T cells and IL-17–promoting cytokines, and the myocarditis/DCM phenotype included significantly low percentages of FOXP3+ Tregs, which may contribute to disease severity. We demonstrate a potentially novel mechanism in human myocarditis/DCM in which TLR2 peptide ligands from human cardiac myosin stimulated exaggerated Th17-related cytokines including TGF-β, IL-6, and IL-23 from myocarditic CD14+ monocytes in vitro, and an anti-TLR2 antibody abrogated the cytokine response. Our translational study explains how an immune phenotype may be initiated by cardiac myosin TLR ligand stimulation of monocytes to generate Th17-promoting cytokines and development of pathogenic Th17 cells in human myocarditis and heart failure, and provides a rationale for targeting IL-17A as a therapeutic option.
Jennifer M. Myers, Leslie T. Cooper, David C. Kem, Stavros Stavrakis, Stanley D. Kosanke, Ethan M. Shevach, DeLisa Fairweather, Julie A. Stoner, Carol J. Cox, Madeleine W. Cunningham
The mechanisms by which exercise mediates its multiple cardiac benefits are only partly understood. Prior comprehensive analyses of the cardiac transcriptional components and microRNAs dynamically regulated by exercise suggest that the CBP/p300-interacting protein CITED4 is a downstream effector in both networks. While CITED4 has documented functional consequences in neonatal cardiomyocytes in vitro, nothing is known about its effects in the adult heart. To investigate the impact of cardiac CITED4 expression in adult animals, we generated transgenic mice with regulated, cardiomyocyte-specific CITED4 expression. Cardiac CITED4 expression in adult mice was sufficient to induce an increase in heart weight and cardiomyocyte size with normal systolic function, similar to the effects of endurance exercise training. After ischemia-reperfusion, CITED4 expression did not change initial infarct size but mediated substantial functional recovery while reducing ventricular dilation and fibrosis. Forced cardiac expression of CITED4 also induced robust activation of the mTORC1 pathway after ischemic injury. Moreover, pharmacological inhibition of mTORC1 abrogated CITED4’s effects in vitro and in vivo. Together, these data establish CITED4 as a regulator of mTOR signaling that is sufficient to induce physiologic hypertrophy at baseline and mitigate adverse ventricular remodeling after ischemic injury.
Vassilios J. Bezzerides, Colin Platt, Carolin Lerchenmüller, Kaavya Paruchuri, Nul Loren Oh, Chunyang Xiao, Yunshan Cao, Nina Mann, Bruce M. Spiegelman, Anthony Rosenzweig
Michael P. Whyte, Katherine L. Madson, Dawn Phillips, Amy L. Reeves, William H. McAlister, Amy Yakimoski, Karen E. Mack, Kim Hamilton, Kori Kagan, Kenji P. Fujita, David D. Thompson, Scott Moseley, Tatjana Odrljin, Cheryl Rockman-Greenberg
Tregs imprint an early immunotolerant tumor environment that prevents effective antitumor immune responses. Using transcriptomics of tumor tissues, we identified early upregulation of VEGF and TGF-β pathways compatible with tolerance imprinting. Silencing of VEGF or TGF-β in tumor cells induced early and pleiotropic modulation of immune-related transcriptome signatures in tumor tissues. These were surprisingly similar for both silenced tumors and related to common downstream effects on Tregs. Silencing of VEGF or TGF-β resulted in dramatically delayed tumor growth, associated with decreased Tregs and myeloid-derived suppressor cells and increased effector T cell activation in tumor infiltrates. Strikingly, co-silencing of TGF-β and VEGF led to a substantial spontaneous tumor eradication rate and the combination of their respective inhibitory drugs was synergistic. VEGF and/or TGF-β silencing also restored tumor sensitivity to tumor-specific cell therapies and markedly improved the efficacy of anti–PD-1/anti–CTLA-4 treatment. Thus, TGF-β and VEGF cooperatively control the tolerant environment of tumors and are targets for improved cancer immunotherapies.
Tristan Courau, Djamel Nehar-Belaid, Laura Florez, Béatrice Levacher, Thomas Vazquez, Faustine Brimaud, Bertrand Bellier, David Klatzmann
Vertebrate life critically depends on renal filtration and excretion of low molecular weight waste products. This process is controlled by a specialized cell-cell contact between podocyte foot processes: the slit diaphragm (SD). Using a comprehensive set of targeted KO mice of key SD molecules, we provided genetic, functional, and high-resolution ultrastructural data highlighting a concept of a flexible, dynamic, and multilayered architecture of the SD. Our data indicate that the mammalian SD is composed of NEPHRIN and NEPH1 molecules, while NEPH2 and NEPH3 do not participate in podocyte intercellular junction formation. Unexpectedly, homo- and heteromeric NEPHRIN/NEPH1 complexes are rarely observed. Instead, single NEPH1 molecules appear to form the lower part of the junction close to the glomerular basement membrane with a width of 23 nm, while single NEPHRIN molecules form an adjacent junction more apically with a width of 45 nm. In both cases, the molecules are quasiperiodically spaced 7 nm apart. These structural findings, in combination with the flexibility inherent to the repetitive Ig folds of NEPHRIN and NEPH1, indicate that the SD likely represents a highly dynamic cell-cell contact that forms an adjustable, nonclogging barrier within the renal filtration apparatus.
Florian Grahammer, Christoph Wigge, Christoph Schell, Oliver Kretz, Jaakko Patrakka, Simon Schneider, Martin Klose, Julia Kind, Sebastian J. Arnold, Anja Habermann, Ricarda Bräuniger, Markus M. Rinschen, Linus Völker, Andreas Bregenzer, Dennis Rubbenstroth, Melanie Boerries, Dontscho Kerjaschki, Jeffrey H. Miner, Gerd Walz, Thomas Benzing, Alessia Fornoni, Achilleas S. Frangakis, Tobias B. Huber
Airway and/or lung remodeling, involving exaggerated extracellular matrix (ECM) protein deposition, is a critical feature common to pulmonary diseases including chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Fibulin-1 (Fbln1), an important ECM protein involved in matrix organization, may be involved in the pathogenesis of these diseases. We found that Fbln1 was increased in COPD patients and in cigarette smoke–induced (CS-induced) experimental COPD in mice. Genetic or therapeutic inhibition of
Gang Liu, Marion A. Cooley, Andrew G. Jarnicki, Alan C-Y. Hsu, Prema M. Nair, Tatt Jhong Haw, Michael Fricker, Shaan L. Gellatly, Richard Y. Kim, Mark D. Inman, Gavin Tjin, Peter A.B. Wark, Marjorie M. Walker, Jay C. Horvat, Brian G. Oliver, W. Scott Argraves, Darryl A. Knight, Janette K. Burgess, Philip M. Hansbro
Fingolimod (FTY720, Gilenya), a sphingosine-1-phosphate receptor (S1PR) modulator, is one of the first-line immunomodulatory therapies for treatment of relapsing-remitting multiple sclerosis (MS). Human
Hsing-Chuan Tsai, Yingxiang Huang, Christopher S. Garris, Monica A. Moreno, Christina W. Griffin, May H. Han
Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9-
Sandra Motas, Virginia Haurigot, Miguel Garcia, Sara Marcó, Albert Ribera, Carles Roca, Xavier Sánchez, Víctor Sánchez, Maria Molas, Joan Bertolin, Luca Maggioni, Xavier León, Jesús Ruberte, Fatima Bosch
Despite identification of causal genes for various lipodystrophy syndromes, the molecular basis of some peculiar lipodystrophies remains obscure. In an African-American pedigree with a novel autosomal dominant, atypical familial partial lipodystrophy (FPLD), we performed linkage analysis for candidate regions and whole-exome sequencing to identify the disease-causing mutation. Affected adults reported marked loss of fat from the extremities, with excess fat in the face and neck at age 13–15 years, and developed metabolic complications later. A heterozygous g.112837956C>T mutation on chromosome 10 (c.202C>T, p.Leu68Phe) affecting a highly conserved residue in adrenoceptor α 2A (
Abhimanyu Garg, Shireesha Sankella, Chao Xing, Anil K. Agarwal
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease driven by both innate and adaptive immune cells. African Americans tend to present with more severe disease at an earlier age compared with patients of European ancestry. In order to better understand the immunological differences between African American and European American patients, we analyzed the frequencies of B cell subsets and the expression of B cell activation markers from a total of 68 SLE patients and 69 normal healthy volunteers. We found that B cells expressing the activation markers CD86, CD80, PD1, and CD40L, as well as CD19+CD27–IgD– double-negative B cells, were enriched in African American patients vs. patients of European ancestry. In addition to increased expression of CD40L, surface levels of CD40 on B cells were lower, suggesting the engagement of the CD40 pathway. In vitro experiments confirmed that CD40L expressed by B cells could lead to CD40 activation and internalization on adjacent B cells. To conclude, these results indicate that, compared with European American patients, African American SLE patients present with a particularly active B cell component, possibly via the activation of the CD40/CD40L pathway. These data may help guide the development of novel therapies.
Laurence C. Menard, Sium Habte, Waldemar Gonsiorek, Deborah Lee, Dana Banas, Deborah A. Holloway, Nataly Manjarrez-Orduno, Mark Cunningham, Dawn Stetsko, Francesca Casano, Selena Kansal, Patricia M. Davis, Julie Carman, Clarence K. Zhang, Ferva Abidi, Richard Furie, Steven G. Nadler, Suzanne J. Suchard
Marlise R. Luskin, Phyllis A. Gimotty, Catherine Smith, Alison W. Loren, Maria E. Figueroa, Jenna Harrison, Zhuoxin Sun, Martin S. Tallman, Elisabeth M. Paietta, Mark R. Litzow, Ari M. Melnick, Ross L. Levine, Hugo F. Fernandez, Selina M. Luger, Martin Carroll, Stephen R. Master, Gerald B.W. Wertheim
Radiation therapy (RT), a critical modality in the treatment of lung cancer, induces direct tumor cell death and augments tumor-specific immunity. However, despite initial tumor control, most patients suffer from locoregional relapse and/or metastatic disease following RT. The use of immunotherapy in non–small-cell lung cancer (NSCLC) could potentially change this outcome by enhancing the effects of RT. Here, we report significant (up to 70% volume reduction of the target lesion) and durable (up to 12 weeks) tumor regressions in conditional
Grit S. Herter-Sprie, Shohei Koyama, Houari Korideck, Josephine Hai, Jiehui Deng, Yvonne Y. Li, Kevin A. Buczkowski, Aaron K. Grant, Soumya Ullas, Kevin Rhee, Jillian D. Cavanaugh, Neermala Poudel Neupane, Camilla L. Christensen, Jan M. Herter, G. Mike Makrigiorgos, F. Stephen Hodi, Gordon J. Freeman, Glenn Dranoff, Peter S. Hammerman, Alec C. Kimmelman, Kwok-Kin Wong
Novel, tumor-specific drugs are urgently needed for a breakthrough in cancer therapy. Herein, we generated a first-in-class humanized antibody (PRL3-zumab) against PRL-3, an intracellular tumor-associated phosphatase upregulated in multiple human cancers, for unconventional cancer immunotherapies. We focused on gastric cancer (GC), wherein elevated
Min Thura, Abdul Qader Omer Al-Aidaroos, Wei Peng Yong, Koji Kono, Abhishek Gupta, You Bin Lin, Kousaku Mimura, Jean Paul Thiery, Boon Cher Goh, Patrick Tan, Ross Soo, Cheng William Hong, Lingzhi Wang, Suling Joyce Lin, Elya Chen, Sun Young Rha, Hyun Cheol Chung, Jie Li, Sayantani Nandi, Hiu Fung Yuen, Shu-Dong Zhang, Yeoh Khay Guan, Jimmy So, Qi Zeng
Mosaicism is increasingly recognized as a cause of developmental disorders with the advent of next-generation sequencing (NGS). Mosaic mutations of
Ghayda Mirzaa, Andrew E. Timms, Valerio Conti, Evan August Boyle, Katta M. Girisha, Beth Martin, Martin Kircher, Carissa Olds, Jane Juusola, Sarah Collins, Kaylee Park, Melissa Carter, Ian Glass, Inge Krägeloh-Mann, David Chitayat, Aditi Shah Parikh, Rachael Bradshaw, Erin Torti, Stephen Braddock, Leah Burke, Sondhya Ghedia, Mark Stephan, Fiona Stewart, Chitra Prasad, Melanie Napier, Sulagna Saitta, Rachel Straussberg, Michael Gabbett, Bridget C. O’Connor, Catherine E. Keegan, Lim Jiin Yin, Angeline Hwei Meeng Lai, Nicole Martin, Margaret McKinnon, Marie-Claude Addor, Luigi Boccuto, Charles E. Schwartz, Agustina Lanoel, Robert L. Conway, Koenraad Devriendt, Katrina Tatton-Brown, Mary Ella Pierpont, Michael Painter, Lisa Worgan, James Reggin, Raoul Hennekam, Karen Tsuchiya, Colin C. Pritchard, Mariana Aracena, Karen W. Gripp, Maria Cordisco, Hilde Van Esch, Livia Garavelli, Cynthia Curry, Anne Goriely, Hulya Kayserilli, Jay Shendure, John Graham Jr., Renzo Guerrini, William B. Dobyns