Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Issue published February 25, 2016

  • Volume 1, Issue 2
  • Previous Issue | Next Issue
Research Articles
Mitochondrial protein hyperacetylation in the failing heart
Julie L. Horton, … , Joshua J. Coon, Daniel P. Kelly
Julie L. Horton, … , Joshua J. Coon, Daniel P. Kelly
Published February 25, 2016
Citation Information: JCI Insight. 2016;1(2):e84897. https://doi.org/10.1172/jci.insight.84897.
View: Text | PDF

Mitochondrial protein hyperacetylation in the failing heart

  • Text
  • PDF
Abstract

Myocardial fuel and energy metabolic derangements contribute to the pathogenesis of heart failure. Recent evidence implicates posttranslational mechanisms in the energy metabolic disturbances that contribute to the pathogenesis of heart failure. We hypothesized that accumulation of metabolite intermediates of fuel oxidation pathways drives posttranslational modifications of mitochondrial proteins during the development of heart failure. Myocardial acetylproteomics demonstrated extensive mitochondrial protein lysine hyperacetylation in the early stages of heart failure in well-defined mouse models and the in end-stage failing human heart. To determine the functional impact of increased mitochondrial protein acetylation, we focused on succinate dehydrogenase A (SDHA), a critical component of both the tricarboxylic acid (TCA) cycle and respiratory complex II. An acetyl-mimetic mutation targeting an SDHA lysine residue shown to be hyperacetylated in the failing human heart reduced catalytic function and reduced complex II–driven respiration. These results identify alterations in mitochondrial acetyl-CoA homeostasis as a potential driver of the development of energy metabolic derangements that contribute to heart failure.

Authors

Julie L. Horton, Ola J. Martin, Ling Lai, Nicholas M. Riley, Alicia L. Richards, Rick B. Vega, Teresa C. Leone, David J. Pagliarini, Deborah M. Muoio, Kenneth C. Bedi Jr., Kenneth B. Margulies, Joshua J. Coon, Daniel P. Kelly

×

Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice
Noelia Escobedo, … , Michael Detmar, Guillermo Oliver
Noelia Escobedo, … , Michael Detmar, Guillermo Oliver
Published February 25, 2016
Citation Information: JCI Insight. 2016;1(2):e85096. https://doi.org/10.1172/jci.insight.85096.
View: Text | PDF

Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice

  • Text
  • PDF
Abstract

Prox1 heterozygous mice have a defective lymphatic vasculature and develop late-onset obesity. Chyle abnormally leaks from those vessels, accumulates in the surrounding tissues, and causes an increase in adipose tissue. We characterized the lymphatics of Prox1+/– mice to determine whether the extent of obesity correlated with the severity of lymphatic defects. The lymphatic vasculature in Prox1+/– mice exhibited reduced tracer clearance from the ear skin, dysfunctional perfusion of the lower legs, and reduced tracer uptake into the deep lymphatic collectors during mechanostimulation prior to the onset of obesity. Ear lymphatic vessels and leg collectors in Prox1+/– mice were disorganized and irregular, further confirming that defective lymphatic vessels are associated with obesity in Prox1+/– mice. We now provide conclusive in vivo evidence that demonstrates that leaky lymphatics mediate obesity in Prox1+/– mice, as restoration of lymphatic vasculature function was sufficient to rescue the obesity features in Prox1+/– mice. Finally, depth-lipomic profiling of lymph contents showed that free fatty acids induce adipogenesis in vitro.

Authors

Noelia Escobedo, Steven T. Proulx, Sinem Karaman, Miriam E. Dillard, Nicole Johnson, Michael Detmar, Guillermo Oliver

×

Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery
Daniel A. Wolf, … , Jack Hoppin, Ajay Verma
Daniel A. Wolf, … , Jack Hoppin, Ajay Verma
Published February 25, 2016
Citation Information: JCI Insight. 2016;1(2):e85311. https://doi.org/10.1172/jci.insight.85311.
View: Text | PDF

Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery

  • Text
  • PDF
Abstract

The intrathecal (IT) dosing route offers a seemingly obvious solution for delivering drugs directly to the central nervous system. However, gaps in understanding drug molecule behavior within the anatomically and kinetically unique environment of the mammalian IT space have impeded the establishment of pharmacokinetic principles for optimizing regional drug exposure along the neuraxis. Here, we have utilized high-resolution single-photon emission tomography with X-ray computed tomography to study the behavior of multiple molecular imaging tracers following an IT bolus injection, with supporting histology, autoradiography, block-face tomography, and MRI. Using simultaneous dual-isotope imaging, we demonstrate that the regional CNS tissue exposure of molecules with varying chemical properties is affected by IT space anatomy, cerebrospinal fluid (CSF) dynamics, CSF clearance routes, and the location and volume of the injected bolus. These imaging approaches can be used across species to optimize the safety and efficacy of IT drug therapy for neurological disorders.

Authors

Daniel A. Wolf, Jacob Y. Hesterman, Jenna M. Sullivan, Kelly D. Orcutt, Matthew D. Silva, Merryl Lobo, Tyler Wellman, Jack Hoppin, Ajay Verma

×

Survey for human polyomaviruses in cancer
Tuna Toptan, … , Patrick S. Moore, Yuan Chang
Tuna Toptan, … , Patrick S. Moore, Yuan Chang
Published February 25, 2016
Citation Information: JCI Insight. 2016;1(2):e85562. https://doi.org/10.1172/jci.insight.85562.
View: Text | PDF

Survey for human polyomaviruses in cancer

  • Text
  • PDF
Abstract

Over the past 8 years, the discovery of 11 new human polyomaviruses (HPyVs) has revived interest in this DNA tumor virus family. Although HPyV infection is widespread and largely asymptomatic, one of these HPyVs, Merkel cell polyomavirus (MCV), is a bona fide human tumor virus. JC virus (JCV), BK virus, HPyV7, and trichodysplasia-spinulosa virus (TSV) can cause nonneoplastic diseases in the setting of immunosuppression. Few specific reagents are available to study the biology of the newly discovered HPyVs. We developed a pan-HPyV-screening method using a cocktail of 3 antibodies that, when combined, recognize T antigen proteins of all HPyVs. We validated detection characteristics of the antibody cocktail by immunoblotting and immunohistochemistry and screened 1,184 cases, including well-defined diseases and tumor tissue microarrays. This assay robustly detected MCV, TSV, JCV, and HPyV7 in etiologically related diseases. We further identified WU polyomavirus in a case of chronic lymphocytic lymphoma-associated bronchitis. Except for scattered, incidentally infected cells in 5% of lung squamous cell carcinomas and colon adenocarcinomas, a broad panel of tumor tissues was largely negative for infection by any HPyV. This method eliminates known HPyVs as suspected causes of cancers investigated in this study. Pan-HPyV survey can be applied to identify diseases associated with recently discovered polyomaviruses.

Authors

Tuna Toptan, Samuel A. Yousem, Jonhan Ho, Yuki Matsushima, Laura P. Stabile, Maria-Teresa Fernández-Figueras, Rohit Bhargava, Akihide Ryo, Patrick S. Moore, Yuan Chang

×

Autoimmune response to transthyretin in juvenile idiopathic arthritis
Cristina C. Clement, … , Steven A. Porcelli, Laura Santambrogio
Cristina C. Clement, … , Steven A. Porcelli, Laura Santambrogio
Published February 25, 2016
Citation Information: JCI Insight. 2016;1(2):e85633. https://doi.org/10.1172/jci.insight.85633.
View: Text | PDF

Autoimmune response to transthyretin in juvenile idiopathic arthritis

  • Text
  • PDF
Abstract

Juvenile idiopathic arthritis (JIA) is the most common pediatric rheumatological condition. Although it has been proposed that JIA has an autoimmune component, the autoantigens are still unknown. Using biochemical and proteomic approaches, we identified the molecular chaperone transthyretin (TTR) as an antigenic target for B and T cell immune responses. TTR was eluted from IgG complexes and affinity purified from 3 JIA patients, and a statistically significant increase in TTR autoantibodies was observed in a group of 43 JIA patients. Three cryptic, HLA-DR1–restricted TTR peptides, which induced CD4+ T cell expansion and IFN-γ and TNF-α production in 3 out of 17 analyzed patients, were also identified. Misfolding, aggregation and oxidation of TTR, as observed in the synovial fluid of all JIA patients, enhanced its immunogenicity in HLA-DR1 transgenic mice. Our data point to TTR as an autoantigen potentially involved in the pathogenesis of JIA and to oxidation and aggregation as a mechanism facilitating TTR autoimmunity.

Authors

Cristina C. Clement, Halima Moncrieffe, Aditi Lele, Ginger Janow, Aniuska Becerra, Francesco Bauli, Fawzy A. Saad, Giorgio Perino, Cristina Montagna, Neil Cobelli, John Hardin, Lawrence J. Stern, Norman Ilowite, Steven A. Porcelli, Laura Santambrogio

×

Heme oxygenase-1 regulates mitochondrial quality control in the heart
Travis D. Hull, … , Anupam Agarwal, James F. George
Travis D. Hull, … , Anupam Agarwal, James F. George
Published February 25, 2016
Citation Information: JCI Insight. 2016;1(2):e85817. https://doi.org/10.1172/jci.insight.85817.
View: Text | PDF

Heme oxygenase-1 regulates mitochondrial quality control in the heart

  • Text
  • PDF
Abstract

The cardioprotective inducible enzyme heme oxygenase-1 (HO-1) degrades prooxidant heme into equimolar quantities of carbon monoxide, biliverdin, and iron. We hypothesized that HO-1 mediates cardiac protection, at least in part, by regulating mitochondrial quality control. We treated WT and HO-1 transgenic mice with the known mitochondrial toxin, doxorubicin (DOX). Relative to WT mice, mice globally overexpressing human HO-1 were protected from DOX-induced dilated cardiomyopathy, cardiac cytoarchitectural derangement, and infiltration of CD11b+ mononuclear phagocytes. Cardiac-specific overexpression of HO-1 ameliorated DOX-mediated dilation of the sarcoplasmic reticulum as well as mitochondrial disorganization in the form of mitochondrial fragmentation and increased numbers of damaged mitochondria in autophagic vacuoles. HO-1 overexpression promotes mitochondrial biogenesis by upregulating protein expression of NRF1, PGC1α, and TFAM, which was inhibited in WT animals treated with DOX. Concomitantly, HO-1 overexpression inhibited the upregulation of the mitochondrial fission mediator Fis1 and resulted in increased expression of the fusion mediators, Mfn1 and Mfn2. It also prevented dynamic changes in the levels of key mediators of the mitophagy pathway, PINK1 and parkin. Therefore, these findings suggest that HO-1 has a novel role in protecting the heart from oxidative injury by regulating mitochondrial quality control.

Authors

Travis D. Hull, Ravindra Boddu, Lingling Guo, Cornelia C. Tisher, Amie M. Traylor, Bindiya Patel, Reny Joseph, Sumanth D. Prabhu, Hagir B. Suliman, Claude A. Piantadosi, Anupam Agarwal, James F. George

×

Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype
Konrad Gabrusiewicz, … , Erik P. Sulman, Amy B. Heimberger
Konrad Gabrusiewicz, … , Erik P. Sulman, Amy B. Heimberger
Published February 25, 2016
Citation Information: JCI Insight. 2016;1(2):e85841. https://doi.org/10.1172/jci.insight.85841.
View: Text | PDF

Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype

  • Text
  • PDF
Abstract

Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages.

Authors

Konrad Gabrusiewicz, Benjamin Rodriguez, Jun Wei, Yuuri Hashimoto, Luke M. Healy, Sourindra N. Maiti, Ginu Thomas, Shouhao Zhou, Qianghu Wang, Ahmed Elakkad, Brandon D. Liebelt, Nasser K. Yaghi, Ravesanker Ezhilarasan, Neal Huang, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Raymond Sawaya, Lauren A. Langford, Janet M. Bruner, Gregory N. Fuller, Amit Bar-Or, Wei Li, Rivka R. Colen, Michael A. Curran, Krishna P. Bhat, Jack P. Antel, Laurence J. Cooper, Erik P. Sulman, Amy B. Heimberger

×
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts