Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Research

  • 2,146 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 49
  • 50
  • 51
  • …
  • 214
  • 215
  • Next →
Explainable Deep Learning and Biomechanical Modeling for TMJ Disorder Morphological Risk Factors
Shuchun Sun, Pei Xu, Nathan Buchweitz, Cherice N. Hill, Farhad Ahmadi, Marshall B. Wilson, Angela Mei, Xin She, Benedikt Sagl, Elizabeth H. Slate, Janice S. Lee, Yongren Wu, Hai Yao
Shuchun Sun, Pei Xu, Nathan Buchweitz, Cherice N. Hill, Farhad Ahmadi, Marshall B. Wilson, Angela Mei, Xin She, Benedikt Sagl, Elizabeth H. Slate, Janice S. Lee, Yongren Wu, Hai Yao
View: Text | PDF

Explainable Deep Learning and Biomechanical Modeling for TMJ Disorder Morphological Risk Factors

  • Text
  • PDF
Abstract

Clarifying multifactorial musculoskeletal disorder etiologies supports risk analysis and development of targeted prevention and treatment modalities. Deep learning enables comprehensive risk factor identification through systematic analysis of disease datasets but does not provide sufficient context for mechanistic understanding, limiting clinical applicability for etiological investigations. Conversely, multiscale biomechanical modeling can evaluate mechanistic etiology within the relevant biomechanical and physiological context. We propose a hybrid approach combining 3D explainable deep learning and multiscale biomechanical modeling; we applied this approach to investigate temporomandibular joint (TMJ) disorder etiology by systematically identifying risk factors and elucidating mechanistic relationships between risk factors and TMJ biomechanics and mechanobiology. Our 3D convolutional neural network recognized TMJ disorder patients through subject-specific morphological features in condylar, ramus, and chin. Driven by deep learning model outputs, biomechanical modeling revealed that small mandibular size and flat condylar shape were associated with increased TMJ disorder risk through increased joint force, decreased tissue nutrient availability and cell ATP production, and increased TMJ disc strain energy density. Combining explainable deep learning and multiscale biomechanical modeling addresses the “mechanism unknown” limitation undermining translational confidence in clinical applications of deep learning and increases methodological accessibility for smaller clinical datasets by providing the crucial biomechanical context.

Authors

Shuchun Sun, Pei Xu, Nathan Buchweitz, Cherice N. Hill, Farhad Ahmadi, Marshall B. Wilson, Angela Mei, Xin She, Benedikt Sagl, Elizabeth H. Slate, Janice S. Lee, Yongren Wu, Hai Yao

×

Lymphotoxin β receptor and tertiary lymphoid organs shape acute and chronic allograft rejection
Gang Zhang, Neda Feizi, Daqiang Zhao, Latha Halesha, Amanda L. Williams, Parmjeet S. Randhawa, Khodor I. Abou-Daya, Martin H. Oberbarnscheidt
Gang Zhang, Neda Feizi, Daqiang Zhao, Latha Halesha, Amanda L. Williams, Parmjeet S. Randhawa, Khodor I. Abou-Daya, Martin H. Oberbarnscheidt
View: Text | PDF

Lymphotoxin β receptor and tertiary lymphoid organs shape acute and chronic allograft rejection

  • Text
  • PDF
Abstract

Solid organ transplantation remains the life-saving treatment for end-stage organ failure, but chronic rejection remains a major obstacle to long-term allograft outcomes and has not improved substantially. Tertiary lymphoid organs (TLO) are ectopic lymphoid structures that form under conditions of chronic inflammation, and evidence from human transplantation suggests that TLO regularly form in allografts undergoing chronic rejection. In this study, we utilized a mouse renal transplantation model and manipulation of the lymphotoxin alpha (LTα) – lymphotoxin beta receptor (LTβR) pathway, which is essential for TLO formation, to define the role of TLO in transplantation. We showed that intragraft TLO are sufficient to activate the alloimmune response and mediate graft rejection in a model where the only lymphoid organs are TLO in the allograft. When transplanted to recipients with a normal set of secondary lymphoid organs, the presence of graft TLO or LTα overexpression accelerated rejection. If the LTβR pathway was disrupted in the donor graft, TLO formation was abrogated, and graft survival prolonged. Intravital microscopy of renal TLO demonstrated that local T and B cell activation in TLOs is similar to that observed in secondary lymphoid organs. In summary, we demonstrated that immune activation in TLO contributes to local immune responses, leading to earlier allograft failure. TLO and the LTαβ-LTβR pathway are therefore prime targets to limit local immune responses and prevent allograft rejection. These findings are applicable to other diseases such as autoimmunity or tumors, where either limiting or boosting local immune responses is beneficial and improves disease outcomes.

Authors

Gang Zhang, Neda Feizi, Daqiang Zhao, Latha Halesha, Amanda L. Williams, Parmjeet S. Randhawa, Khodor I. Abou-Daya, Martin H. Oberbarnscheidt

×

BRD7 as key factor in PBAF complex assembly and CD8+ T cell differentiation
Feng Huang, Yingtong Lin, Yidan Qiao, Yaochang Yuan, Zhihan Zhong, Baohong Luo, Yating Wu, Jun Liu, Jingliang Chen, Wanying Zhang, Hui Zhang, Bingfeng Liu
Feng Huang, Yingtong Lin, Yidan Qiao, Yaochang Yuan, Zhihan Zhong, Baohong Luo, Yating Wu, Jun Liu, Jingliang Chen, Wanying Zhang, Hui Zhang, Bingfeng Liu
View: Text | PDF

BRD7 as key factor in PBAF complex assembly and CD8+ T cell differentiation

  • Text
  • PDF
Abstract

Upon infection, naïve CD8+ T cells differentiate into cytotoxic effector cells to eliminate the pathogen-infected cells. Although many mechanisms underlying this process have been demonstrated, the regulatory role of chromatin remodel system in this process remains largely unknown. Here we showed that BRD7, a component of the polybromo-associated BRG1-associated factor complex (PBAF), was required for naïve CD8+ T cells to differentiate into functional short-lived effector cells (SLECs) in response to acute infections caused by influenza virus or lymphocytic choriomeningitis virus (LCMV). BRD7-deficiency in CD8+ T cells resulted in profound defects in effector population and functions, thereby impairing viral clearance and host recovery. Further mechanical studies indicated that the expression of BRD7 significantly turned to high from naïve CD8+ T cells to effector cells, bridged BRG1 and PBRM1 to the core module of PBAF complex, consequently facilitating the assembly of PBAF complex rather than BAF complex in the effector cells. The PBAF complex changed the chromatin accessibility at the loci of Tbx21 gene and up-regulated its expression, leading to the maturation of effector T cells. Our research confirms BRD7 and the PBAF complex are key in CD8+ T cell development and present a significant target for advancing immune therapies.

Authors

Feng Huang, Yingtong Lin, Yidan Qiao, Yaochang Yuan, Zhihan Zhong, Baohong Luo, Yating Wu, Jun Liu, Jingliang Chen, Wanying Zhang, Hui Zhang, Bingfeng Liu

×

Thrombospondin-1 promotes fibro-adipogenic stromal expansion and contractile dysfunction of the diaphragm in obesity
Eric D. Buras, Moon-Sook Woo, Romil Kaul Verma, Sri Harshita Kondisetti, Carol S. Davis, Dennis R. Claflin, Kimber Converso-Baran, Daniel E. Michele, Susan V. Brooks, Tae-Hwa Chun
Eric D. Buras, Moon-Sook Woo, Romil Kaul Verma, Sri Harshita Kondisetti, Carol S. Davis, Dennis R. Claflin, Kimber Converso-Baran, Daniel E. Michele, Susan V. Brooks, Tae-Hwa Chun
View: Text | PDF

Thrombospondin-1 promotes fibro-adipogenic stromal expansion and contractile dysfunction of the diaphragm in obesity

  • Text
  • PDF
Abstract

Pulmonary disorders impact 40% to 80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragmatic weakness. Increased intra-diaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs) — mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing the effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1 knockout (Thbs1–/–) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGF β-related expression signatures and augmentation of a Thy1-expressing sub-population previously linked to type 2 diabetes. Despite similar weight gain, Thbs1–/– mice were protected from these transcriptomic changes and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1–/– diaphragms maintained normal contractile force and motion after DIO challenge. These findings establish THBS1 as a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition and a potential therapeutic target in obesity-associated respiratory dysfunction.

Authors

Eric D. Buras, Moon-Sook Woo, Romil Kaul Verma, Sri Harshita Kondisetti, Carol S. Davis, Dennis R. Claflin, Kimber Converso-Baran, Daniel E. Michele, Susan V. Brooks, Tae-Hwa Chun

×

Iron capture through CD71 drives perinatal and tumor-associated Treg expansion
Ilenia Pacella, Alessandra Pinzon Grimaldos, Alessandra Rossi, Gloria Tucci, Marta Zagaglioni, Elena Potenza, Valeria Pinna, Ivano Rotella, Ilenia Cammarata, Valeria Cancila, Beatrice Belmonte, Claudio Tripodo, Giuseppe Pietropaolo, Chiara Di Censo, Giuseppe Sciumè, Valerio Licursi, Giovanna Peruzzi, Ylenia Antonucci, Silvia Campello, Francesca Guerrieri, Valerio Iebba, Rita Prota, Maria Di Chiara, Gianluca Terrin, Valerio De Peppo, Gian Luca Grazi, Vincenzo Barnaba, Silvia Piconese
Ilenia Pacella, Alessandra Pinzon Grimaldos, Alessandra Rossi, Gloria Tucci, Marta Zagaglioni, Elena Potenza, Valeria Pinna, Ivano Rotella, Ilenia Cammarata, Valeria Cancila, Beatrice Belmonte, Claudio Tripodo, Giuseppe Pietropaolo, Chiara Di Censo, Giuseppe Sciumè, Valerio Licursi, Giovanna Peruzzi, Ylenia Antonucci, Silvia Campello, Francesca Guerrieri, Valerio Iebba, Rita Prota, Maria Di Chiara, Gianluca Terrin, Valerio De Peppo, Gian Luca Grazi, Vincenzo Barnaba, Silvia Piconese
View: Text | PDF

Iron capture through CD71 drives perinatal and tumor-associated Treg expansion

  • Text
  • PDF
Abstract

Beside suppressing immune responses, regulatory T cells (Tregs) maintain tissue homeostasis and control systemic metabolism. Whether iron is involved in Treg-mediated tolerance is completely unknown. Here, we showed that the transferrin receptor CD71 was upregulated on activated Tregs infiltrating human liver cancer. Mice with a Treg-restricted CD71 deficiency spontaneously developed a scurfy-like disease, caused by impaired perinatal Treg expansion. CD71-null Tregs displayed decreased proliferation and tissue-Treg signature loss. In perinatal life, CD71 deficiency in Tregs triggered hepatic iron overload response, characterized by increased hepcidin transcription and iron accumulation in macrophages. Lower bacterial diversity, and reduction of beneficial species, were detected in the fecal microbiota of CD71 conditional knock-out neonates. Our findings indicate that CD71-mediated iron absorption is required for Treg perinatal expansion and related to systemic iron homeostasis and bacterial gut colonization. Therefore, we hypothesize that Tregs establish nutritional tolerance through competition for iron during bacterial colonization after birth.

Authors

Ilenia Pacella, Alessandra Pinzon Grimaldos, Alessandra Rossi, Gloria Tucci, Marta Zagaglioni, Elena Potenza, Valeria Pinna, Ivano Rotella, Ilenia Cammarata, Valeria Cancila, Beatrice Belmonte, Claudio Tripodo, Giuseppe Pietropaolo, Chiara Di Censo, Giuseppe Sciumè, Valerio Licursi, Giovanna Peruzzi, Ylenia Antonucci, Silvia Campello, Francesca Guerrieri, Valerio Iebba, Rita Prota, Maria Di Chiara, Gianluca Terrin, Valerio De Peppo, Gian Luca Grazi, Vincenzo Barnaba, Silvia Piconese

×

A metabolic redox relay supports ER proinsulin export in pancreatic islet β-cells
Kristen E. Rohli, Nicole J. Stubbe, Emily M. Walker, Gemma L. Pearson, Scott A. Soleimanpour, Samuel B. Stephens
Kristen E. Rohli, Nicole J. Stubbe, Emily M. Walker, Gemma L. Pearson, Scott A. Soleimanpour, Samuel B. Stephens
View: Text | PDF

A metabolic redox relay supports ER proinsulin export in pancreatic islet β-cells

  • Text
  • PDF
Abstract

Endoplasmic reticulum (ER) stress and proinsulin misfolding are heralded as contributing factors to β-cell dysfunction in Type 2 diabetes (T2D), yet how ER function becomes compromised is not well understood. Recent data identifies altered ER redox homeostasis as a critical mechanism that contributes to insulin granule loss in diabetes. Hyperoxidation of the ER delays proinsulin export and limits the proinsulin supply available for insulin granule formation. In this report, we identified glucose metabolism as a critical determinant in the redox homeostasis of the ER. Using multiple β-cell models, we showed that loss of mitochondrial function or inhibition of cellular metabolism elicited ER hyperoxidation and delayed ER proinsulin export. Our data further demonstrated that β-cell ER redox homeostasis was supported by the metabolic supply of reductive redox donors. We showed that limiting NADPH and thioredoxin flux delayed ER proinsulin export, whereas Txnip suppression restored ER redox and proinsulin trafficking. Taken together, we propose that β-cell ER redox homeostasis is buffered by cellular redox donor cycles, which are maintained through active glucose metabolism.

Authors

Kristen E. Rohli, Nicole J. Stubbe, Emily M. Walker, Gemma L. Pearson, Scott A. Soleimanpour, Samuel B. Stephens

×

Fibroblast growth factor receptors mediate cellular senescence in the cystic fibrosis airway epithelium
Molly Easter, Meghan June Hirsch, Elex Harris, Patrick Henry Howze IV, Emma Lea Matthews, Luke I. Jones, Seth Bollenbecker, Shia Vang, Daniel J. Tyrrell, Yan Y. Sanders, Susan E. Birket, Jarrod W. Barnes, Stefanie Krick
Molly Easter, Meghan June Hirsch, Elex Harris, Patrick Henry Howze IV, Emma Lea Matthews, Luke I. Jones, Seth Bollenbecker, Shia Vang, Daniel J. Tyrrell, Yan Y. Sanders, Susan E. Birket, Jarrod W. Barnes, Stefanie Krick
View: Text | PDF

Fibroblast growth factor receptors mediate cellular senescence in the cystic fibrosis airway epithelium

  • Text
  • PDF
Abstract

The number of adults living with cystic fibrosis (CF) has already increased significantly due to drastic improvements in life expectancy attributable to advances in treatment including the development of highly effective modulator therapy. Chronic airway inflammation in cystic fibrosis (CF) contributes to morbidity and mortality and aging processes like ‘inflammaging’ and cell senescence impact CF pathology. Our results show that single cell RNA sequencing data, human primary bronchial epithelial cells from non-CF and CF donors, a CF bronchial epithelial cell line, and Cftr knockout (Cftr–/–) rats all demonstrated increased cell senescence markers in the CF bronchial epithelium. This was associated with upregulation of fibroblast growth factor receptors (FGFRs) and mitogen-activated protein kinase (MAPK) p38. Inhibition of FGFRs, specifically FGFR4 and to some extent FGFR1 attenuated cell senescence and improved mucociliary clearance, which was associated with MAPK p38 signaling. Mucociliary dysfunction could also be improved using a combination of senolytics in a CF ex vivo model. In summary, FGFR/MAPK p38 signaling contributes to cell senescence in CF airways, which is associated with impaired mucociliary clearance. Therefore, attenuation of cell senescence in the CF airways might be a future therapeutic strategy improving mucociliary dysfunction and lung disease in an aging CF population.

Authors

Molly Easter, Meghan June Hirsch, Elex Harris, Patrick Henry Howze IV, Emma Lea Matthews, Luke I. Jones, Seth Bollenbecker, Shia Vang, Daniel J. Tyrrell, Yan Y. Sanders, Susan E. Birket, Jarrod W. Barnes, Stefanie Krick

×

Spatial detection and consequences of nonrenal calcitriol production as assessed by targeted mass spectrometry imaging
Mark B. Meyer, Seong Min Lee, Shannon R. Cichanski, Diego F. Cobice, J. Wesley Pike
Mark B. Meyer, Seong Min Lee, Shannon R. Cichanski, Diego F. Cobice, J. Wesley Pike
View: Text | PDF

Spatial detection and consequences of nonrenal calcitriol production as assessed by targeted mass spectrometry imaging

  • Text
  • PDF
Abstract

The immune benefits of vitamin D3 supplementation beyond calcium and phosphate maintenance are highly clinically debated. Kidney expression of CYP27B1 is the source of endocrine, circulating 1,25(OH)2D3 (active form of vitamin D) that maintains serum calcium and phosphate. 1,25(OH)2D3 may also be made by the CYP27B1 enzyme in non-renal cells, like immune cells, in a process driven by cellular availability of 25(OH)D3 and inflammation. Due to the endocrine nature of 1,25(OH)2D3 in circulation, it is difficult to discern between these two sources. We recently created a regulatory deletion model of Cyp27b1 (M1/M21-DIKO) where mice have normal inflammatory-regulated Cyp27b1 expression in non-renal tissues (unlike global Cyp27b1-KO), but no expression within kidney. Here, utilizing on-tissue chemical derivatization and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry Imaging (MALDI-MSI), we investigated the distribution of 1,25(OH)2D3 and 25(OH)D3 in the kidney, liver, spleen, and thymus. MALDI-MSI demonstrated increased 1,25(OH)2D3 in non-renal tissues such as the spleen after vitamin D3 supplementation in M1/M21-DIKO mice. Additionally, from this we found increased Il4 and decreased Tnfa in the spleen after vitamin D3 supplementation. Taken together, these data demonstrate non-renal production of 1,25(OH)2D3 in vivo and provide a consequence of vitamin D3 supplementation and non-renal 1,25(OH)2D3 production in cytokine changes.

Authors

Mark B. Meyer, Seong Min Lee, Shannon R. Cichanski, Diego F. Cobice, J. Wesley Pike

×

HPV8-induced STAT3 activation led keratinocyte stem cell expansion in human actinic keratoses
Huw J. Morgan, Carlotta Olivero, Boris Y. Shorning, Alex Gibbs, Alexandra L. Phillips, Lokapriya Ananthan, Annabelle Xiao Hui Lim, Licia Martuscelli, Cinzia Borgogna, Marco De Andrea, Martin Hufbauer, Richard G. Goodwin, Baki Akgül, Marisa Gariglio, Girish K. Patel
Huw J. Morgan, Carlotta Olivero, Boris Y. Shorning, Alex Gibbs, Alexandra L. Phillips, Lokapriya Ananthan, Annabelle Xiao Hui Lim, Licia Martuscelli, Cinzia Borgogna, Marco De Andrea, Martin Hufbauer, Richard G. Goodwin, Baki Akgül, Marisa Gariglio, Girish K. Patel
View: Text | PDF

HPV8-induced STAT3 activation led keratinocyte stem cell expansion in human actinic keratoses

  • Text
  • PDF
Abstract

Despite epidermal turnover, the skin is host to a complex array of microbes including viruses, such as the human papillomavirus (HPV), which must infect and manipulate skin keratinocyte stem cells (KSC) to survive. This crosstalk between the virome and KSC populations remains largely unknown. Here, we investigated the effect of HPV8 on KSCs using various mouse models. We observed that the HPV8 early region gene E6 specifically caused Lrig1+ hair follicle junctional zone KSC proliferation and expansion, which would facilitate viral transmission. Within Lrig1+ KSCs specifically, HPV8 E6 bound intracellular p300 to phosphorylate the STAT3 transcriptional regulatory node. This induces ΔNp63 expression, resulting in KSC expansion into the overlying epidermis. HPV8 was associated with 70% of human actinic keratoses (AK). Together these results define the “hit and run” mechanism for HPV8 in human actinic keratosis as an expansion of KSCs, which lacks melanosome protection and is thus susceptible to sun-light-induced malignant transformation.

Authors

Huw J. Morgan, Carlotta Olivero, Boris Y. Shorning, Alex Gibbs, Alexandra L. Phillips, Lokapriya Ananthan, Annabelle Xiao Hui Lim, Licia Martuscelli, Cinzia Borgogna, Marco De Andrea, Martin Hufbauer, Richard G. Goodwin, Baki Akgül, Marisa Gariglio, Girish K. Patel

×

Targeting DRP1 with Mdivi-1 to correct mitochondrial abnormalities in ADOA plus syndrome
Yan Lin, Dongdong Wang, Busu Li, Jiayin Wang, Ling Xu, Xiaohan Sun, Kunqian Ji, Chuanzhu Yan, Fuchen Liu, Yuying Zhao
Yan Lin, Dongdong Wang, Busu Li, Jiayin Wang, Ling Xu, Xiaohan Sun, Kunqian Ji, Chuanzhu Yan, Fuchen Liu, Yuying Zhao
View: Text | PDF

Targeting DRP1 with Mdivi-1 to correct mitochondrial abnormalities in ADOA plus syndrome

  • Text
  • PDF
Abstract

Autosomal dominant optic atrophy plus (ADOA+) is characterized by primary optic nerve atrophy accompanied by a spectrum of degenerative neurological symptoms. Despite ongoing research, no effective treatments are currently available for this condition. Our study provided evidence for the pathogenicity of an unreported c.1780T>C variant in the OPA1 gene through patient-derived skin fibroblasts and an engineered HEK293T cell line with OPA1 downregulation. We demonstrated that OPA1 insufficiency promoted mitochondrial fragmentation and increased DRP1 expression, disrupting mitochondrial dynamics. Consequently, this disruption enhanced mitophagy and caused mitochondrial dysfunction, contributing to the ADOA+ phenotype. Notably, the Drp1 inhibitor, mitochondrial division inhibitor-1 (Mdivi-1), effectively mitigated the adverse effects of OPA1 impairment. These effects included reduced Drp1 phosphorylation, decreased mitochondrial fragmentation, and balanced mitophagy. Thus, we propose that intervening in DRP1 with Mdivi-1 could correct mitochondrial abnormalities, offering a promising therapeutic approach for managing ADOA+.

Authors

Yan Lin, Dongdong Wang, Busu Li, Jiayin Wang, Ling Xu, Xiaohan Sun, Kunqian Ji, Chuanzhu Yan, Fuchen Liu, Yuying Zhao

×
  • ← Previous
  • 1
  • 2
  • …
  • 49
  • 50
  • 51
  • …
  • 214
  • 215
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts