Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Research

  • 2,108 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 173
  • 174
  • 175
  • …
  • 210
  • 211
  • Next →
Pulmonary Mycobacterium tuberculosis control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment
Uma Shanmugasundaram, Allison N. Bucsan, Shashank R. Ganatra, Chris Ibegbu, Melanie Quezada, Robert V. Blair, Xavier Alvarez, Vijayakumar Velu, Deepak Kaushal, Jyothi Rengarajan
Uma Shanmugasundaram, Allison N. Bucsan, Shashank R. Ganatra, Chris Ibegbu, Melanie Quezada, Robert V. Blair, Xavier Alvarez, Vijayakumar Velu, Deepak Kaushal, Jyothi Rengarajan
View: Text | PDF

Pulmonary Mycobacterium tuberculosis control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment

  • Text
  • PDF
Abstract

Mycobacterium tuberculosis (Mtb)-specific T cell responses associated with immune control during asymptomatic latent tuberculosis infection (LTBI) remain poorly understood. Using a non-human primate (NHP) aerosol model, we studied the kinetics, phenotypes and functions of Mtb antigen-specific T cells in peripheral and lung compartments of Mtb-infected asymptomatic rhesus macaques by longitudinally sampling blood and bronchoalveolar lavage (BAL), for up to 24 weeks post-infection. We found significantly higher frequencies of Mtb-specific effector and memory CD4 and CD8 T cells producing IFN-γ in the airways compared to peripheral blood, which were maintained throughout the study period. Moreover, Mtb-specific IL-17+ and IL-17/IFN-γ double-positive T cells were present in the airways but were largely absent in the periphery, suggesting that balanced mucosal Th1/Th17 responses are associated with LTBI. The majority of Mtb-specific CD4 T cells that homed to the airways expressed the chemokine receptor CXCR3 and co-expressed CCR6. Notably, CXCR3+CD4+ cells were found in granulomatous and non-granulomatous regions of the lung and inversely correlated with Mtb burden. Our findings provide novel insights into antigen-specific T cell responses associated with asymptomatic Mtb infection that are relevant for developing better strategies to control TB

Authors

Uma Shanmugasundaram, Allison N. Bucsan, Shashank R. Ganatra, Chris Ibegbu, Melanie Quezada, Robert V. Blair, Xavier Alvarez, Vijayakumar Velu, Deepak Kaushal, Jyothi Rengarajan

×

Proteomics identifies a convergent innate response to infective endocarditis and extensive proteolysis in vegetation components
Daniel R. Martin, James C. Witten, Carmela D. Tan, E. Rene Rodriguez, Eugene H. Blackstone, Gosta Pettersson, Deborah E. Seifert, Belinda Willard, Suneel Apte
Daniel R. Martin, James C. Witten, Carmela D. Tan, E. Rene Rodriguez, Eugene H. Blackstone, Gosta Pettersson, Deborah E. Seifert, Belinda Willard, Suneel Apte
View: Text | PDF

Proteomics identifies a convergent innate response to infective endocarditis and extensive proteolysis in vegetation components

  • Text
  • PDF
Abstract

Infective endocarditis is a life-threatening infection of heart valves and adjacent structures characterized by vegetations on valves and other endocardial surfaces, with tissue destruction and risk of embolization. We used high-resolution mass spectrometry to define the proteome of staphylococcal and non-staphylococcal vegetations and Terminal Amine Isotopic Labeling of Substrates (TAILS) to define their proteolytic landscapes. These approaches identified over 2000 human proteins in staphylococcal and non-staphylococcal vegetations. Individual vegetation proteomes demonstrated comparable profiles of quantitatively major constituents that overlapped with serum, platelet and neutrophil proteomes. Staphylococcal vegetation proteomes resembled each other more than the proteomes of non-staphylococcal vegetations. TAILS demonstrated extensive proteolysis within vegetations, with numerous previously undescribed cleavages. Several proteases and pathogen-specific proteins, including virulence factors were identified in most vegetations. Proteolytic peptides in fibronectin and complement C3 were identified as potential infective endocarditis biomarkers. Overlap of staphylococcal and non-staphylococcal vegetation proteomes suggests a convergent thrombotic and immune response to endocardial infection by diverse pathogens. However, the differences between staphylococcal and non-staphylococcal vegetations and internal variance within the non-staphylococcal group indicates that additional pathogen- or patient-specific effects exist. Pervasive proteolysis of vegetation components may arise from vegetation-intrinsic proteases and destabilize vegetations, contributing to embolism.

Authors

Daniel R. Martin, James C. Witten, Carmela D. Tan, E. Rene Rodriguez, Eugene H. Blackstone, Gosta Pettersson, Deborah E. Seifert, Belinda Willard, Suneel Apte

×

Reduced HIV-1 latent reservoir outgrowth and distinct immune correlates among females in Rakai, Uganda
Jessica L. Prodger, Adam A. Capoferri, Katherine Yu, Jun Lai, Steven J. Reynolds, Jingo Kasule, Taddeo Kityamuweesi, Paul Buule, David Serwadda, Kyungyoon J. Kwon, Katherine Schlusser, Craig Martens, Eileen P. Scully, Yun-Hee Choi, Andrew D. Redd, Thomas C. Quinn
Jessica L. Prodger, Adam A. Capoferri, Katherine Yu, Jun Lai, Steven J. Reynolds, Jingo Kasule, Taddeo Kityamuweesi, Paul Buule, David Serwadda, Kyungyoon J. Kwon, Katherine Schlusser, Craig Martens, Eileen P. Scully, Yun-Hee Choi, Andrew D. Redd, Thomas C. Quinn
View: Text | PDF

Reduced HIV-1 latent reservoir outgrowth and distinct immune correlates among females in Rakai, Uganda

  • Text
  • PDF
Abstract

HIV-1 remains incurable due to the persistence of proviral DNA integrated into host cells, providing a reservoir for viral rebound upon cessation of antiretroviral therapy (ART). There is evidence for sex-based differences in HIV-1 immune responses and pathogenesis, but little is known about differences in HIV-1 persistence. To address this knowledge gap, we quantified persistent HIV-1 in 90 adults on suppressive ART in Rakai, Uganda (57 females). Total HIV-1 DNA was quantified by PCR and replication competent provirus by the quantitative viral outgrowth assay (QVOA). Immune phenotyping of T cell subsets and plasma biomarkers was also performed. We found that while both sexes had similar levels of total HIV DNA, females had significantly fewer cells harboring replication-competent virus, as measured by viral outgrowth in the QVOA. Predictors of viral outgrowth differed by sex; notably, frequency of PD-1+ CD4 T cells correlated with reservoir size in males, but not females. The sex-based differences in HIV-1 persistence observed in this cohort warrant additional research, especially given the widespread use of the QVOA to assess reservoir size and current explorations of PD-1 agonists in cure protocols. Efforts should be made to power future cure studies to assess outcomes in both males and females.

Authors

Jessica L. Prodger, Adam A. Capoferri, Katherine Yu, Jun Lai, Steven J. Reynolds, Jingo Kasule, Taddeo Kityamuweesi, Paul Buule, David Serwadda, Kyungyoon J. Kwon, Katherine Schlusser, Craig Martens, Eileen P. Scully, Yun-Hee Choi, Andrew D. Redd, Thomas C. Quinn

×

A rational mouse model to detect on-target off-tumor CAR T cell toxicity
Mauro Castellarin, Caroline Sands, Tong Da, John Scholler, Kathleen Graham, Elizabeth Buza, Joseph A. Fraietta, Yangbing Zhao, Carl H. June
Mauro Castellarin, Caroline Sands, Tong Da, John Scholler, Kathleen Graham, Elizabeth Buza, Joseph A. Fraietta, Yangbing Zhao, Carl H. June
View: Text | PDF

A rational mouse model to detect on-target off-tumor CAR T cell toxicity

  • Text
  • PDF
Abstract

Off-tumor targeting of human antigens is difficult to predict in preclinical animal studies and can lead to serious adverse effects in patients. To address this, we developed a mouse model with stable and tunable human HER2 (hHER2) expression on normal hepatic tissue and compared toxicity between affinity-tuned HER2 CAR T cells (CARTs). In mice with hHER2-high livers, both the high-affinity (HA) and low-affinity (LA) CARTs caused lethal liver damage due to immunotoxicity. Mice with hHER2-low livers, LA-CARTs exhibited less liver damage and lower systemic levels of IFN-γ than HA-CARTs. We then compared affinity-tuned CARTs for their ability to control a hHER2-positive tumor xenograft in our model. Surprisingly, the LA-CARTs outperformed the HA-CARTs with superior antitumor efficacy in vivo. We hypothesized that this was due in part to T cell trafficking differences between LA and HA-CARTs and found that the LA-CARTs migrated out of the liver and infiltrated the tumor sooner than the HA-CARTs. These findings highlight the importance of T cell targeting in reducing toxicity of normal tissue and also in preventing off-tumor sequestration of CARTs, which reduces their therapeutic potency. Our model may be useful to evaluate various CARTs that have conditional expression of more than one scFv.

Authors

Mauro Castellarin, Caroline Sands, Tong Da, John Scholler, Kathleen Graham, Elizabeth Buza, Joseph A. Fraietta, Yangbing Zhao, Carl H. June

×

Mir-96 and miR-183 differentially regulate neonatal and adult post-infarct neovascularisation
Raphael F.P. Castellan, Milena Vitiello, Martina Vidmar, Steven Johnstone, Dominga Iacobazzi, David Mellis, Benjamin Cathcart, Adrian JW Thomson, Christiana Ruhrberg, Massimo Caputo, David E. Newby, Gillian A. Gray, Andrew Howard Baker, Andrea Caporali, Marco Meloni
Raphael F.P. Castellan, Milena Vitiello, Martina Vidmar, Steven Johnstone, Dominga Iacobazzi, David Mellis, Benjamin Cathcart, Adrian JW Thomson, Christiana Ruhrberg, Massimo Caputo, David E. Newby, Gillian A. Gray, Andrew Howard Baker, Andrea Caporali, Marco Meloni
View: Text | PDF

Mir-96 and miR-183 differentially regulate neonatal and adult post-infarct neovascularisation

  • Text
  • PDF
Abstract

Following myocardial infarction (MI), the adult heart has minimal regenerative potential. Conversely, the neonatal heart can undergo extensive regeneration, and neovascularisation capacity was hypothesised to contribute to this difference. Here, we demonstrate the higher angiogenic potential of neonatal compared to adult mouse cardiac endothelial cells (MCECs) in vitro and use this difference to identify candidate microRNAs (miRs) regulating cardiac angiogenesis after MI. MiR expression profiling revealed miR-96 and miR-183 upregulation in adult compared to neonatal MCECs. Their overexpression decreased the angiogenic potential of neonatal MCECs in vitro and prevented scar resolution and neovascularisation in neonatal mice after MI. Inversely, their inhibition improved the angiogenic potential of adult MCECs, and miR-96/miR-183 knock-out mice had increased peri-infarct neovascularisation. In silico analyses identified anillin (ANLN) as a direct target of miR-96 and miR-183. In agreement, Anln expression declined following their overexpression and increased after their inhibition in vitro. Moreover, ANLN expression inversely correlated with miR-96 expression and age in cardiac ECs of cardiovascular patients. In vivo, ANLN-positive vessels were enriched in the peri-infarct area of miR-96/miR-183 knock-out mice. These findings identify miR-96 and miR-183 as regulators of neovascularisation following MI and miR-regulated genes such as anillin as potential therapeutic targets for cardiovascular disease.

Authors

Raphael F.P. Castellan, Milena Vitiello, Martina Vidmar, Steven Johnstone, Dominga Iacobazzi, David Mellis, Benjamin Cathcart, Adrian JW Thomson, Christiana Ruhrberg, Massimo Caputo, David E. Newby, Gillian A. Gray, Andrew Howard Baker, Andrea Caporali, Marco Meloni

×

Free light chains injure proximal tubule cells through STAT1-HMGB1-TLR axis
Rohit Upadhyay, Wei-Zhong Ying, Zannatul Nasrin, Hana Safah, Edgar A. Jaimes, Wenguang Feng, Paul W. Sanders, Vecihi Batuman
Rohit Upadhyay, Wei-Zhong Ying, Zannatul Nasrin, Hana Safah, Edgar A. Jaimes, Wenguang Feng, Paul W. Sanders, Vecihi Batuman
View: Text | PDF

Free light chains injure proximal tubule cells through STAT1-HMGB1-TLR axis

  • Text
  • PDF
Abstract

Free light chains (FLCs) induce inflammatory pathways in proximal tubule cells (PTCs). The role of toll-like receptors (TLR) in these responses is unknown. Here we present findings on the role of TLRs in FLC-induced PTC injury. We exposed human kidney PTC cultures to κ and λ FLCs, and used cell supernatants and pellets for ELISA and gene expression studies. We also analyzed tissues from Stat1–/– and littermate control mice treated with daily intraperitoneal injections of a κ-FLC for 10 days. FLCs increased the expression of TLRs 2, 4, 6 via HMGB1, a damage-associated molecular pattern. Countering TLRs 2, 4, and 6 through GIT-27 or specific TLR-siRNAs reduced downstream cytokine responses. Blocking HMGB1 through siRNA or pharmacologic inhibition, or via STAT1 inhibition reduced FLC-induced TLRs 2, 4, and 6 expression. Blocking endocytosis of FLCs through silencing of megalin/cubilin, with bafilomycin-A1, or hypertonic sucrose attenuated FLC-induced cytokine responses in PTCs. Immunohistochemistry showed decreased TLR 4 and 6 expression in kidney sections from Stat1–/– mice compared to their littermate controls. PTCs exposed to FLCs released HMGB1, which induced TLRs 2, 4, 6 expression and downstream inflammation. Blocking FLCs’ endocytosis, Stat1 knock-down, HMGB1 inhibition, and TLR knock-down each rescued PTCs from FLC-induced injury.

Authors

Rohit Upadhyay, Wei-Zhong Ying, Zannatul Nasrin, Hana Safah, Edgar A. Jaimes, Wenguang Feng, Paul W. Sanders, Vecihi Batuman

×

Wnt/β-catenin activated Ewing sarcoma cells promote the angiogenic switch
Allegra G. Hawkins, Elisabeth A. Pedersen, Sydney Treichel, Kelsey Temprine, Colin Sperring, Jay A. Read, Brian Magnuson, Rashmi Chugh, Elizabeth R. Lawlor
Allegra G. Hawkins, Elisabeth A. Pedersen, Sydney Treichel, Kelsey Temprine, Colin Sperring, Jay A. Read, Brian Magnuson, Rashmi Chugh, Elizabeth R. Lawlor
View: Text | PDF

Wnt/β-catenin activated Ewing sarcoma cells promote the angiogenic switch

  • Text
  • PDF
Abstract

Wnt/β-catenin signaling is active in small subpopulations of Ewing sarcoma cells and these cells display a more metastatic phenotype, in part due to antagonism of EWS-FLI1-dependent transcriptional activity. Importantly, these β-catenin-activated Ewing cells also alter secretion of extracellular matrix (ECM) proteins. We thus hypothesized that, in addition to cell autonomous mechanisms, Wnt/β-catenin-active tumor cells might contribute to disease progression by altering the tumor microenvironment (TME). Analysis of transcriptomic data from primary patient biopsies and from β-catenin-active versus non-active tumor cells identified angiogenic switch genes as being highly and reproducibly upregulated in the context of β-catenin activation. In addition, in silico and in vitro analyses, along with chorioallantoic membrane assays, demonstrated that β-catenin-activated Ewing cells secrete factors that promote angiogenesis. In particular, activation of canonical Wnt signaling leads Ewing sarcoma cells to upregulate expression and secretion of pro-angiogenic ECM proteins, collectively termed the angiomatrix. Significantly, our data show that induction of the angiomatrix by Wnt-responsive tumor cells is indirect and is mediated by TGF-β. Mechanistically, Wnt/β-catenin signaling antagonizes EWS-FLI1-dependent repression of TGFBR2, thereby sensitizing tumor cells to TGF-β ligands. Together these findings suggest that Wnt/β-catenin active tumor cells can contribute to Ewing sarcoma progression by promoting angiogenesis in the local TME.

Authors

Allegra G. Hawkins, Elisabeth A. Pedersen, Sydney Treichel, Kelsey Temprine, Colin Sperring, Jay A. Read, Brian Magnuson, Rashmi Chugh, Elizabeth R. Lawlor

×

Chronic-plus-binge alcohol intake induces production of proinflammatory mtDNA-enriched extracellular vesicles and steatohepatitis via ASK1-p38MAPKα-dependent mechanisms
Jing Ma, Haixia Cao, Robim M. Rodrigues, Mingjiang Xu, Tianyi Ren, Yong He, Seonghwan Hwang, Dechun Feng, Ruixue Ren, Peixin Yang, Suthat Liangpunsakul, Jian Sun, Bin Gao
Jing Ma, Haixia Cao, Robim M. Rodrigues, Mingjiang Xu, Tianyi Ren, Yong He, Seonghwan Hwang, Dechun Feng, Ruixue Ren, Peixin Yang, Suthat Liangpunsakul, Jian Sun, Bin Gao
View: Text | PDF | Corrigendum

Chronic-plus-binge alcohol intake induces production of proinflammatory mtDNA-enriched extracellular vesicles and steatohepatitis via ASK1-p38MAPKα-dependent mechanisms

  • Text
  • PDF
Abstract

Alcoholic liver disease is a spectrum of liver disorders with histopathological changes ranging from simple steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. Recent data suggest that chronic-plus-binge ethanol intake induces steatohepatitis by promoting hepatocytes to release proinflammatory mitochondrial DNA (mtDNA)-enriched extracellular vesicles (EVs). The aim of this study was to investigate the role of the stress kinase apoptosis signal-regulating kinase 1 (ASK1) and p38 mitogen-activated protein kinase (p38) in chronic-plus-binge ethanol-induced steatohepatitis and mtDNA-enriched EV release. Microarray analysis revealed the highest hepatic upregulation of metallothionein 1/2 (Mt1/2) which encode two most potent antioxidant proteins. Genetic deletion of the Mt1/2 gene aggravated ethanol-induced liver injury, as evidenced by elevation of serum ALT, neutrophil infiltration, oxidative stress and ASK1/p38 activation in the liver. Inhibition or genetic deletion of the Ask1 or p38 ameliorated ethanol-induced liver injury, inflammation, reactive oxygen species levels, and expression of phagocytic oxidase and ER stress markers in the liver. In addition, inhibition of ASK1 or p38 also attenuated ethanol-induced mtDNA-enriched EV secretion from hepatocytes. Taken together, these findings indicate that induction of hepatic mtDNA-enriched EVs by ethanol is dependent on ASK1 and p38, thereby promoting alcoholic steatohepatitis.

Authors

Jing Ma, Haixia Cao, Robim M. Rodrigues, Mingjiang Xu, Tianyi Ren, Yong He, Seonghwan Hwang, Dechun Feng, Ruixue Ren, Peixin Yang, Suthat Liangpunsakul, Jian Sun, Bin Gao

×

S1PR1 regulates the quiescence of lymphatic vessels by inhibiting laminar shear stress-dependent VEGF-C signaling
Xin Geng, Keisuke Yanagida, Racheal G. Akwii, Dongwon Choi, Lijuan Chen, YenChun Ho, Boksik Cha, Md. Riaj Mahamud, Karen Berman de Ruiz, Hirotake Ichise, Hong Chen, Joshua Wythe, Constantinos M. Mikelis, Timothy Hla, R. Sathish Srinivasan
Xin Geng, Keisuke Yanagida, Racheal G. Akwii, Dongwon Choi, Lijuan Chen, YenChun Ho, Boksik Cha, Md. Riaj Mahamud, Karen Berman de Ruiz, Hirotake Ichise, Hong Chen, Joshua Wythe, Constantinos M. Mikelis, Timothy Hla, R. Sathish Srinivasan
View: Text | PDF

S1PR1 regulates the quiescence of lymphatic vessels by inhibiting laminar shear stress-dependent VEGF-C signaling

  • Text
  • PDF
Abstract

During the growth of lymphatic vessels (lymphangiogenesis), lymphatic endothelial cells (LECs) at the growing front sprout by forming filopodia. Those tip cells are not exposed to circulating lymph, as they are not lumenized. In contrast, LECs that trail the growing front are exposed to shear stress, become quiescent and remodel into stable vessels. The mechanisms that coordinate the opposed activities of lymphatic sprouting and maturation remain poorly understood. Here we show that the canonical tip cell marker Delta-Like 4 (DLL4) promotes sprouting lymphangiogenesis by enhancing Vascular Endothelial Growth Factor C (VEGF-C) /VEGF Receptor 3 (VEGFR3) signaling. However, in lumenized lymphatic vessels laminar shear stress (LSS) inhibits the expression of DLL4, as well as additional tip cell markers. Paradoxically, LSS also upregulates VEGF-C/VEGFR3 signaling in LECs, but sphingosine 1-phosphate (S1P) receptor 1 (S1PR1) activity antagonizes LSS-mediated VEGF-C signaling to promote lymphatic vascular quiescence. Correspondingly, S1pr1 loss in LECs induced lymphatic vascular hypersprouting and hyperbranching, which could be rescued by reducing Vegfr3 gene dosage in vivo. In addition, S1PR1 regulates lymphatic vessel maturation by inhibiting RhoA activity to promote membrane localization of the tight junction molecule Claudin-5. Our findings suggest a new paradigm in which LSS induces quiescence and promotes the survival of LECs by downregulating DLL4 and enhancing VEGF-C signaling, respectively. S1PR1 dampens LSS/VEGF-C signaling, thereby preventing sprouting from quiescent lymphatic vessels. These results also highlight the distinct roles that S1PR1 and DLL4 play in LECs when compared to their known roles in the blood vasculature.

Authors

Xin Geng, Keisuke Yanagida, Racheal G. Akwii, Dongwon Choi, Lijuan Chen, YenChun Ho, Boksik Cha, Md. Riaj Mahamud, Karen Berman de Ruiz, Hirotake Ichise, Hong Chen, Joshua Wythe, Constantinos M. Mikelis, Timothy Hla, R. Sathish Srinivasan

×

Intravascular hemolysis triggers ADP-mediated generation of platelet-rich thrombi in pre-capillary pulmonary arterioles
Tomasz Brzoska, Ravi Vats, Margaret F. Bennewitz, Egemen Tutuncuoglu, Simon C. Watkins, Margaret V. Ragni, Matthew D. Neal, Mark T. Gladwin, Prithu Sundd
Tomasz Brzoska, Ravi Vats, Margaret F. Bennewitz, Egemen Tutuncuoglu, Simon C. Watkins, Margaret V. Ragni, Matthew D. Neal, Mark T. Gladwin, Prithu Sundd
View: Text | PDF

Intravascular hemolysis triggers ADP-mediated generation of platelet-rich thrombi in pre-capillary pulmonary arterioles

  • Text
  • PDF
Abstract

Patients with hereditary or acquired hemolytic anemias have a high risk of developing in-situ thrombosis of the pulmonary vasculature. While pulmonary thrombosis is a major morbidity associated with hemolytic disorders, the etiological mechanism underlying hemolysis-induced pulmonary thrombosis remains largely unknown. Here, we use intravital lung microscopy in mice for the first time to assess the pathogenesis of pulmonary thrombosis following deionized-water induced acute intravascular hemolysis. Acute hemolysis triggered the development of αIIbβ3-dependent platelet-rich thrombi in precapillary pulmonary arterioles, which led to the transient impairment of pulmonary blood flow. The hemolysis-induced pulmonary thrombosis was phenocopied with intravenous ADP- but not thrombin-triggered pulmonary thrombosis. Consistent with a mechanism involving ADP release from hemolyzing erythrocytes, the inhibition of platelet-P2Y12 purinergic-receptor signaling attenuated pulmonary thrombosis and rescued blood flow in the pulmonary arterioles of mice following intravascular hemolysis. These findings are the first in vivo studies to suggest that acute intravascular hemolysis promotes ADP-dependent platelet activation leading to thrombosis in the pre-capillary pulmonary arterioles and that thrombin generation most likely does not play a significant role in the pathogenesis of acute hemolysis-triggered pulmonary thrombosis.

Authors

Tomasz Brzoska, Ravi Vats, Margaret F. Bennewitz, Egemen Tutuncuoglu, Simon C. Watkins, Margaret V. Ragni, Matthew D. Neal, Mark T. Gladwin, Prithu Sundd

×
  • ← Previous
  • 1
  • 2
  • …
  • 173
  • 174
  • 175
  • …
  • 210
  • 211
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts