Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
Effect of dietary fat and sucrose consumption on cardiac fibrosis in mice and rhesus monkeys
Niranjana Natarajan, … , Julie A. Mattison, Richard T. Lee
Niranjana Natarajan, … , Julie A. Mattison, Richard T. Lee
Published August 15, 2019
Citation Information: JCI Insight. 2019;4(18):e128685. https://doi.org/10.1172/jci.insight.128685.
View: Text | PDF
Research Article Aging Cardiology

Effect of dietary fat and sucrose consumption on cardiac fibrosis in mice and rhesus monkeys

  • Text
  • PDF
Abstract

Calorie restriction (CR) improved health span in 2 longitudinal studies in nonhuman primates (NHPs), yet only the University of Wisconsin (UW) study demonstrated an increase in survival in CR monkeys relative to controls; the National Institute on Aging (NIA) study did not. Here, analysis of left ventricle samples showed that CR did not reduce cardiac fibrosis relative to controls. However, there was a 5.9-fold increase of total fibrosis in UW hearts, compared with NIA hearts. Diet composition was a prominent difference between the studies; therefore, we used the NHP diets to characterize diet-associated molecular and functional changes in the hearts of mice. Consistent with the findings from the NHP samples, mice fed a UW or a modified NIA diet with increased sucrose and fat developed greater cardiac fibrosis compared with mice fed the NIA diet, and transcriptomics analysis revealed diet-induced activation of myocardial oxidative phosphorylation and cardiac muscle contraction pathways.

Authors

Niranjana Natarajan, Ana Vujic, Jishnu Das, Annie C. Wang, Krystal K. Phu, Spencer H. Kiehm, Elisabeth M. Ricci-Blair, Anthony Y. Zhu, Kelli L. Vaughan, Ricki J. Colman, Julie A. Mattison, Richard T. Lee

×

Full Text PDF | Download (7.12 MB)

Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts