Rosacea is a chronic skin disorder characterized by abnormal neurovascular and inflammatory conditions on the central face. Despite increasing evidence suggests that rosacea is associated with metabolic disorders, the role of metabolism in rosacea pathogenesis remains unknown. Here, via targeted metabolomics approach, we characterized significantly altered metabolic signatures in rosacea patients, especially for amino acid-related metabolic pathways. Among these, glutamic acid and aspartic acid are highlighted and positively correlated with the disease severity in rosacea patients. We further demonstrated that glutamic acid and aspartic acid can facilitate the development of erythema and telangiectasia, typical features of rosacea, in the skin of mice. Mechanistically, glutamic acid and aspartic acid stimulate the production of vasodilation-related neuropeptides from peripheral neuron and keratinocytes, and induce the release of nitric oxide from endothelial cells and keratinocytes. Interestingly, we provided evidence showing that doxycycline can improve the symptoms of rosacea patients possibly by targeting amino acid metabolic pathway. These findings reveal that abnormal amino acid metabolism promotes neurovascular reactivity in rosacea, and raise the possibility of targeting dysregulated metabolism as a promising strategy for clinical treatment.
Tangxiele Liu, Wenqin Xiao, Mengting Chen, Rui Mao, San Xu, Qinqin Peng, Zhixiang Zhao, Qian Wang, Hongfu Xie, Zhili Deng, Ji Li
Expression of the transcription factor Interferon Regulatory Factor 4 (IRF4) is required for the development of lung conventional dendritic cells type 2 (cDC2s) that elicit Th2 responses, yet how IRF4 functions in lung cDC2s throughout the acute and memory allergic response is not clear. Here, we use a novel mouse model that loses IRF4 expression after lung cDC2 development to demonstrate that mice with IRF4-deficient DCs display impaired memory responses to allergen. This defect in the memory response is a direct result of ineffective Th2 induction and impaired recruitment of activated effector T cells to the lung after sensitization. IRF4-deficient DCs demonstrate defects in their migration to the draining lymph node and in T cell priming. Finally, T cells primed by IRF4-competent DCs mediate potent memory responses independently of IRF4-expressing DCs, demonstrating that IRF4-expressing DCs are not necessary during the memory response. Thus, IRF4 controls a program in mature DCs governing Th2 priming and effector responses, but IRF4-expressing DCs are dispensable during tissue resident-memory T cell (TRM cell)-dependent memory responses.
Daniel F. Camacho, Tania E. Velez, Maile K. Hollinger, Esther Wang, Chanie L. Howard, Eli P. Darnell, Domenick E. Kennedy, Paulette A. Krishack, Cara L. Hrusch, Marcus R. Clark, James J. Moon, Anne I. Sperling
Pseudomonas aeruginosa undergoes diversification during infection of the cystic fibrosis (CF) lung. Understanding these changes requires model systems that capture the complexity of the CF lung environment. We previously identified loss-of-function mutations in the two-component regulatory system sensor kinase gene pmrB, in P. aeruginosa from CF and from experimental infection of mice. Here, we demonstrate that whilst such mutations lower in vitro MICs for multiple antimicrobial classes, this is not reflected in increased antibiotic susceptibility in vivo. Loss of PmrB impairs aminoarabinose modification of lipopolysaccharide, increasing the negative charge of the outer membrane and promoting uptake of cationic antimicrobials. However, in vivo, this can be offset by increased membrane binding of other positively charged molecules present in lungs. The polyamine spermidine readily coats the surface of PmrB-deficient P. aeruginosa, reducing susceptibility to antibiotics that rely on charge differences to bind the outer membrane and increasing biofilm formation. Spermidine is elevated in lungs during P. aeruginosa infection in mice and during episodes of antimicrobial treatment in people with CF. These findings highlight the need to study antimicrobial resistance under clinically relevant environmental conditions. Microbial mutations carrying fitness costs in vitro may be advantageous during infection, where host resources can be utilised.
Chowdhury M. Hasan, Sian Pottenger, Angharad E. Green, Adrienne A. Cox, Jack S. White, Trevor Jones, Craig Winstanley, Aras Kadioglu, Megan H. Wright, Daniel R. Neill, Joanne L. Fothergill
The individual contribution of specific myeloid subsets such as CD1c+ conventional dendritic cells (cDC) to perpetuation of Rheumatoid Arthritis (RA) pathology remains unclear. In addition, the specific innate sensors driving pathogenic activation of CD1c+ cDCs in RA patients and their functional implications have not been characterized. Here, we assessed phenotypical, transcriptional and functional characteristics of CD1c+ and CD141+ cDCs and monocytes from the blood and synovial fluid of RA patients. Increased levels of CCR2 and the IgG receptor CD64 on circulating CD1c+ cDC associated with the presence of this DC subset in the synovial membrane in RA patients. Moreover, synovial CD1c+ cDCs are characterized by increased expression of proinflammatory cytokines and high abilities to induce pathogenic IFNγ+IL-17+ CD4+ T cells in vitro. Finally, we identified the crosstalk between Fcγ Receptors and NLRC4 as a new potential molecular mechanism mediating pathogenic activation, CD64 upregulation and functional specialization of CD1c+ cDCs in response to dsDNA-IgG in RA patients.
Cristina Delgado-Arévalo, Marta Calvet-Mirabent, Ana Triguero-Martinez, Enrique Vázquez de Luis, Alberto Benguría-Filippini, Raquel Largo, Diego Calzada-Fraile, Olga Popova, Ildefonso Sánchez-Cerrillo, Ilya Tsukalov, Roberto Moreno-Vellisca, Hortensia de la Fuente, Gabriel Herrero-Beaumont, Almudena R. Ramiro, Francisco Sánchez-Madrid, Santos Castañeda, Ana Dopazo, Isidoro González-Álvaro, Enrique Martin-Gayo
No disease-modifying drug exists for osteoarthritis (OA). Despite success in animal models, candidate drugs continue to fail in clinical trials due to the unmapped interpatient heterogeneity and disease complexity. We have utilized a single-cell cytometry-by-time-of-flight (cyTOF) based platform to precisely outline the effects of candidate drugs on human OA chondrocytes. OA chondrocytes harvested from patients undergoing total knee arthroplasty were treated with two drugs, an NF-κB pathway inhibitor, BMS-345541, and a chondroinductive small molecule, Kartogenin, that showed preclinical success in animal models for OA. cyTOF conducted with 30 metal isotope-labeled antibodies parsed the effects of the drugs on inflammatory, senescent, and chondroprogenitor populations. The NF-κB pathway inhibition decreased the expression of NF-κB, HIF2A and iNOS in multiple chondrocyte clusters and significantly depleted four p16ink4a expressing senescent populations including NOTCH1+STRO1+ chondroprogenitors. While Kartogenin also affected select p16ink4a expressing senescent clusters, there was a less discernible effect on chondroprogenitor populations. Overall, BMS-345541 elicited a uniform drug response in all patients while only a few responded to Kartogenin. These studies demonstrate that a single-cell cyTOF-based drug screening platform can provide insights into patient response assessment and their stratification.
Neety Sahu, Fiorella C. Grandi, Nidhi Bhutani
Neuropathic pain is a refractory condition that involves de novo protein synthesis in the nociceptive pathway. The mechanistic target of rapamycin (mTOR) is a master regulator of protein translation; however, mechanisms underlying its role in neuropathic pain remain elusive. Using the spared nerve injury-induced neuropathic pain model, we found that mTOR was preferentially activated in large-diameter dorsal root ganglion (DRG) neurons and spinal microglia. However, selective ablation of mTOR in DRG neurons, rather than microglia, alleviated acute neuropathic pain in mice. We showed that injury-induced mTOR activation promoted the transcriptional induction of Npy likely via signal transducer and activator of transcription 3 (STAT3) phosphorylation. NPY further acted primarily on Y2 receptors (Y2R) to enhance neuronal excitability. Peripheral replenishment of NPY reversed pain alleviation upon mTOR removal, whereas Y2R antagonists prevented pain restoration. Our findings reveal an unexpected link between mTOR and NPY/Y2R in promoting nociceptor sensitization and neuropathic pain.
Lunhao Chen, Yaling Hu, Siyuan Wang, Kelei Cao, Weihao Mai, Weilin Sha, Huan Ma, Ling-Hui Zeng, Zhen-Zhong Xu, Yong-Jing Gao, Shumin Duan, Yue Wang, Zhihua Gao
Early-stage temporomandibular joint osteoarthritis (TMJOA) is characterized by excessive subchondral bone loss. Emerging evidence suggests that TMJ disc displacement is involved, but the pathogenic mechanism remains unclear. Here, we established a rat model of TMJOA that simulated disc displacement and a capacitance-based force sensing system to directly measure articular surface pressure in vivo. Micro-CT, histological staining, immunofluorescence staining, immunohistochemistry staining, and Western blot were used to assess pathological changes and underlying mechanism of TMJOA in the rat model in vivo as well as in RAW264.7 cells in vitro. We found that disc displacement led to significantly higher pressure on articular surface, which caused subchondral bone loss rapidly via activation of RANTES-CCRs-Akt2 axis. Inhibition of RANTES or Akt2 attenuated subchondral bone loss and resulted in improved subchondral bone microstructure. Cytological studies substantiated that RANTES regulated osteoclast formation by binding to its receptor CCRs and activating Akt2 pathway. The clinical evidence further supported that RANTES was a potential biomarker for predicting subchondral bone loss in early-stage TMJOA. Taken together, this study demonstrates important functions of RANTES-CCRs-Akt2 axis in the regulation of subchondral bone remodeling and provides further knowledge of how disc displacement causes TMJOA.
Shi-Yang Feng, Jie Lei, Yu-Xiang Li, Wen-Ge Shi, Ran-Ran Wang, Adrian Ujin Yap, Yi-Xiang Wang, Kai-Yuan Fu
Immune-related adverse events are a major hurdle to the success of immunotherapy. The immunological mechanisms underlying their development and relation to anti-tumour responses are poorly understood. By examining both systemic and tissue-specific immune changes induced by combination anti-CTLA-4 and anti-PD-1 immunotherapy, we found distinct repertoire changes in patients who developed moderate-severe colitis irrespective of their anti-tumour response to therapy. The proportion of circulating monocytes were significantly increased at baseline in patients who subsequently developed colitis compared to patients who did not develop colitis and biopsies from patients with colitis showed monocytic infiltration of both endoscopically and histopathologically normal and inflamed regions of colon. The magnitude of systemic expansion of T cells following commencement of immunotherapy was also greater in patients who developed colitis. Importantly, we show expansion of specific T cell subsets within inflamed regions of the colon, including tissue-resident memory CD8+ T cells and Th1 CD4+ T cells in patients who developed colitis. Our data also suggest that CD8+ T cell expansion was locally induced, while Th1 cell expansion was systemic. Together our data show exaggerated innate and T cell responses to combination immunotherapy synergise to propel colitis in susceptible patients.
Kazi J. Nahar, Felix Marsh-Wakefield, Robert V. Rawson, Tuba N. Gide, Angela L. Ferguson, Ruth O. Allen, Camelia Quek, Ines Pires da Silva, Stephen Tattersall, Christopher J. Kiely, Neomal Sandanayake, Matteo S. Carlino, Geoff McCaughan, James S. Wilmott, Richard A. Scolyer, Georgina V. Long, Alexander M. Menzies, Umaimainthan Palendira
Developmental and epileptic encephalopathies (DEE) are characterized by pharmacoresistant seizures with concomitant intellectual disability. Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe of these syndromes. De novo variants in ion channels, including gain-of-function variants in KCNT1, have been found to play a major role in the etiology of EIMFS. Here, we test a potential precision therapeutic approach in KCNT1-associated DEE using a gene silencing antisense oligonucleotide (ASO) approach. We generated a mouse model carrying the KCNT1 p.P924L pathogenic variant; only the homozygous animals presented with the frequent, debilitating seizures and developmental compromise that are seen in patients. After a single intracerebroventricular bolus injection of a Kcnt1 gapmer ASO in symptomatic mice at postnatal day 40, seizure frequency was significantly reduced, behavioral abnormalities improved, and overall survival was extended compared to mice treated with a control ASO (non-hybridizing sequence). ASO administration at neonatal age was also well-tolerated and effective in controlling seizures and extending the lifespan of treated animals. The data presented here provide proof of concept for ASO-based gene silencing as a promising therapeutic approach in KCNT1-associated epilepsies.
Lisseth E. Burbano, Melody Li, Nikola Jancovski, Paymaan Jafar-nejad, Kay Richards, Alicia Sedo, Armand Soriano, Ben Rollo, Linghan Jia, Elena V. Gazina, Sandra Piltz, Fatwa Adikusuma, Paul Q. Thomas, Helen Kopsidas, Frank Rigo, Christopher A. Reid, Snezana Maljevic, Steven Petrou
The LAMA5 gene encodes laminin α5, an indispensable component of glomerular basement membrane and other types of basement membrane. A homozygous pathological variant in LAMA5 is known to cause systemic developmental syndrome, including glomerulopathy. However, the roles of heterozygous LAMA5 gene variants in human renal and systemic disease have remained unclear. We performed whole-exome sequence analyses of a family with slowly progressive nephropathy associated with hereditary focal segmental glomerulosclerosis; we identified a probable pathogenic novel variant of LAMA5, NP_005551.3:p.Val3687Met. In vitro analyses revealed cell type-dependent changes in secretion of variant laminin α5 LG4-5 domain. Heterozygous and homozygous knock-in mice with a corresponding variant of human LAMA5, p.Val3687Met, developed focal segmental glomerulosclerosis-like pathology with reduced laminin α5 and increased glomerular vinculin levels; this suggested that impaired cell adhesion may underlie this glomerulopathy. We also identified pulmonary defects such as bronchial deformity and alveolar dilation. Re-examinations of the family revealed phenotypes compatible with reduced laminin α5 and increased vinculin levels in affected tissues. Thus, the heterozygous p.Val3687Met variant may cause a new syndromic nephropathy with focal segmental glomerulosclerosis through possibly defective secretion of laminin α5. Enhanced vinculin may be a useful disease marker.
Jun-Ya Kaimori, Yamato Kikkawa, Daisuke Motooka, Tomoko Namba-Hamano, Ayako Takuwa, Atsuko Imai-Okazaki, Kaori Kobayashi, Arisa Tanigawa, Yuko Kotani, Yoshihiro Uno, Kazuto Yoshimi, Koki Hattori, Yuta Asahina, Sachio Kajimoto, Yohei Doi, Tatsufumi Oka, Yusuke Sakaguchi, Tomoji Mashimo, Kiyotoshi Sekiguchi, Akihiro Nakaya, Motoyoshi Nomizu, Yoshitaka Isaka
No posts were found with this tag.