Achondroplasia (ACH) and hypochondroplasia (HCH), the two most common types of dwarfism, are each caused by FGFR3 gain-of-function mutations that result in increased FGFR3 signaling, disrupting chondrogenesis and osteogenesis resulting in disproportionately shortened long bones. In this study, TYRA-300, a potent and selective FGFR3 inhibitor, was evaluated in three genetic contexts: wild-type mice, the Fgfr3Y367C/+ mouse model of ACH, and the Fgfr3N534K/+ mouse model of HCH. In each model, TYRA-300 treatment increased naso-anal length, tibia and femur length. In the two FGFR3-altered models, TYRA-300-induced growth partially restored the disproportionality of long bones. Histologic analysis of the growth plate in Fgfr3Y367C/+ mice revealed that TYRA-300 mechanistically increased both proliferation and differentiation of chondrocytes. Importantly, children with ACH can experience medical complications due to foramen magnum stenosis, and TYRA-300 significantly improved the size and shape of the skull and foramen magnum in Fgfr3Y367C/+ mice. Spinal stenosis is also a frequent complication, and TYRA-300 increased the lumbar vertebrae length and improved the shape of the intervertebral discs in both models. Taken together, these studies demonstrate that the selective FGFR3 inhibitor TYRA-300 led to a significant increase in bone growth in two independent FGFR3-driven preclinical models as well as in wild-type mice.
Jacqueline H. Starrett, Clara Lemoine, Matthias Guillo, Chantal Fayad, Nabil Kaci, Melissa Neal, Emily Pettitt, Melissandre Pache, Qing Ye, My Chouinard, Eric L. Allen, Geneviève Baujat, Robert L. Hudkins, Michael B. Bober, Todd Harris, Ronald V. Swanson, Laurence Legeai-Mallet
The SARS-CoV-2 pandemic highlighted the potential of mRNA vaccines in rapidly responding to emerging pathogens. However, immunity induced by conventional mRNA vaccines wanes quickly, requiring frequent boosters. Self-amplifying RNA (saRNA) vaccines, which extend antigen expression via self-replication, offer a promising strategy to induce more durable immune responses. In this study, we developed an saRNA vaccine encoding Zika virus (ZIKV) membrane and envelope (M/E) proteins and evaluated its efficacy in mice. A single vaccination elicited strong humoral and cellular immune responses and reduced viral loads, but only for 28 days. By day 84, antibody titers and T cell responses had significantly declined, resulting in reduced efficacy. To address this, we evaluated agonist antibodies targeting the T cell costimulatory molecules OX40 and 4-1BB. Co-administration of agonist antibodies enhanced CD8+ T cell responses to vaccination, resulting in sustained protection and reduced viral loads at day 84. Depletion and passive transfer studies confirmed that long-term protection was primarily CD8+ T cell-dependent, with minimal contributions from antibody responses. These findings suggest that agonists targeting members of the tumor necrosis receptor superfamily, such as OX40 and 4-1BB, might enhance the durability of saRNA vaccine-induced protection, addressing a key limitation of current mRNA vaccine platforms.
Hsueh-Han Lu, Rúbens Prince dos Santos Alves, Qin Hui Li, Luke Eder, Julia Timis, Henry Madany, Kantinan Chuensirikulchai, Krithik V. Varghese, Aditi Singh, Linda Le Tran, Audrey Street, Annie Elong Ngono, Michael Croft, Sujan Shresta
Dipeptidase-1 (DPEP1) is highly upregulated in colorectal cancer (CRC), with its enzymatic function linked to invasion and metastasis. More recently, DPEP1 was found to serve as a receptor for neutrophils when expressed by activated endothelial cells. It is unknown whether neutrophils bind to DPEP1-expressing CRC cells and whether this impacts features of CRC. Neutrophils have been shown to be tumor-promoting in cancers including CRC, where they act to exclude CD8+ T cells. Herein, we show that neutrophils bind DPEP1-expressing CRC cells. In addition, DPEP1 is preferentially expressed in microsatellite stable (MSS) CRC, in which there are a paucity of CD8+ T cells, whereas DPEP1 is negatively correlated with microsatellite unstable (MSI-H) CRC, which are T cell-rich and are more responsive to immunotherapy. Remarkably, carcinogen-treated Dpep1 null mice develop multiple, large, plaque-like, locally invasive adenocarcinomas and squamous cell cancers in the distal colon. These adenocarcinomas exhibit a marked reduction of neutrophils and an influx CD8+ T cells, along with reduced expression of mismatch repair proteins, consistent with features of MSI-H CRC. These results establish DPEP1’s importance in maintaining MSS CRC and its ability to shape the tumor microenvironment.
Sarah E. Glass, Matthew E. Bechard, Zheng Cao, Radhika Aramandla, Ping Zhao, Samuel T. Ellis, Emily H. Green, Elizabeth G. Fisher, Ryan T. Smith, Chelsie K. Sievers, Maria Johnson Irudayam, Frank Revetta, M. Kay Washington, Gregory D. Ayers, Cody N. Heiser, Alan J. Simmons, Yanwen Xu, Yu Wang, Annika Windon, Martha J. Shrubsole, Nicholas O. Markham, Qi Liu, Ken S. Lau, Robert J. Coffey
An estimated 5-10% of cancer results from an underlying genetic predisposition, yet for the majority of these cases the genes in question remain unknown, suggesting a critical need to identify new cancer predisposition genes. The protein phosphatase 2A (PP2A) family exists as a trimeric holoenzyme and is a vital negative regulator of multiple oncogenic pathways. PP2A inhibition by somatic mutation, loss of expression, and upregulation of its exogenous inhibitors in tumors has been well described. However, it remains unknown whether germline loss of any PP2A subunits results in a predisposition to cancer in humans. In this study, we identified nine cancer patients with germline loss-of-function (LOF) variants in PPP2R1B (Aβ), the beta isoform of the PP2A scaffold subunit. All four patients for whom documentation was available also had a family history of cancer, including multiple indicators of hereditary cancer. The most highly represented cancer among the Aβ germline patients was breast cancer. Overexpression of these mutant forms of Aβ resulted in truncated proteins that were rapidly turned over. Characterization of an additional missense germline Aβ variant, R233C, that is also recurrently mutated at the somatic level found that it disrupts PP2A catalytic subunit binding resulting in loss of phosphatase activity. An analysis of Aβ expression among multiple breast cancer cohorts revealed that somatic, heterozygous loss of Aβ was a frequent event in this disease and decreased Aβ expression correlated with shorter disease-free and overall survival. Furthermore, Aβ levels were significantly lower in multiple histological subtypes of both in situ and malignant breast cancer compared to adjacent normal breast tissue, suggesting that Aβ loss is an early event in breast cancer development. Together, this highlights a role for Aβ as a predisposition gene in breast cancer and potentially additional cancers.
Sahar Mazhar, Caitlin M. O’Connor, Alexis Harold, Amanda C. Dowdican, Peter J. Ulintz, Erika N. Hanson, Yuping Zhang, Michelle F. Jacobs, Sofia D. Merajver, Mark W. Jackson, Anthony Scott, Anieta M. Sieuwerts, Arul M. Chinnaiyan, Goutham Narla
The soluble variant of the ectopeptidase CD13 (sCD13), released from the cell surface by matrix metalloproteinase 14 (MMP14), is a potent pro-inflammatory mediator, displaying chemotactic, angiogenic, and arthritogenic properties through bradykinin receptor B1 (B1R). We reveal a link between sCD13 and amplified neutrophil-mediated inflammatory responses in SARS-CoV-2 infection. sCD13 was markedly elevated in COVID-19 patients and correlated with disease severity, variants, ethnicity, inflammation markers, and NETosis. Neutrophils treated with sCD13 showed heightened NETosis and chemotaxis which were inhibited by sCD13 receptor blockade. Meanwhile sCD13 did not induce platelet aggregation. Single-cell analysis of COVID-19 lungs revealed co-expression of CD13 and MMP14 by various cell types, and higher CD13 expression compared to controls. Neutrophils with high CD13 mRNA were enriched for genes associated with immaturity, though CD13 protein expression was lower. Histological examination of COVID-19 lungs revealed CD13-positive leukocytes trapped in vessels with fibrin thrombi. Flow cytometry confirmed the presence of B1R and a second sCD13 receptor, protease-activated receptor 4, on monocytes and neutrophils. These findings identify sCD13 as a potential instigator of COVID-19-associated NETosis, potentiating vascular stress and thromboembolic complications. The potent pro-inflammatory effects of sCD13 may contribute to severe COVID-19, suggesting that sCD13 and its receptors might be therapeutic targets.
Pei-Suen Tsou, Ramadan A. Ali, Chenyang Lu, Gautam Sule, Carmelo Carmona-Rivera, Serena Lucotti, Yuzo Ikari, Qi Wu, Phillip Campbell, Mikel Gurrea-Rubio, Kohei Maeda, Sharon E. Fox, William D. Brodie, Megan N. Mattichak, Caroline Foster, Ajay Tambralli, Srilakshmi Yalavarthi, M. Asif Amin, Katarina Kmetova, Bruna Mazetto Fonseca, Emily Chong, Yu Zuo, Michael Maile, Luisa Imberti, Arnaldo Caruso, Francesca Caccuri, Virginia Quaresima, Alessandra Sottini, Douglas B. Kuhns, Danielle L. Fink, Riccardo Castagnoli, Ottavia Delmonte, Heather Kenney, Yu Zhang, Mary Magliocco, Helen C. Su, Luigi D. Notarangelo, Rachel L. Zemans, Yang Mao-Draayer, Irina Matei, Mirella Salvatore, David C. Lyden, Yogendra Kanthi, Mariana J. Kaplan, Jason S. Knight, David A. Fox
As a major component of intracellular trafficking, the coat protein complex II (COPII) is indispensable for cellular function during embryonic development and throughout life. The four SEC24 proteins (A-D) are essential COPII components involved in cargo selection and packaging. A human disorder corresponding to alterations of SEC24 function is currently only known for SEC24D. Here, we report that biallelic loss of SEC24C leads to a syndrome characterized by primary microcephaly, brain anomalies, epilepsy, hearing loss, liver dysfunction, anemia, and cataracts in an extended consanguineous family with four affected individuals. We show that knockout of sec24C in zebrafish recapitulates important aspects of the human phenotype. SEC24C-deficient fibroblasts display alterations in the expression of several COPII components as well as impaired anterograde trafficking to the Golgi, indicating a severe impact on COPII function. Transcriptome analysis revealed that SEC24C deficiency also impacts the proteasome and autophagy pathways. Moreover, a shift in the N-glycosylation pattern and deregulation of the N-glycosylation pathway suggest a possible secondary alteration of protein glycosylation, linking the described disorder with the congenital disorders of glycosylation.
Nina Bögershausen, Büsranur Cavdarli, Taylor Nagai, Miroslav P. Milev, Alexander Wolff, Mahsa Mehranfar, Julia Schmidt, Dharmendra Choudhary, Óscar Gutiérrez-Gutiérrez, Lukas Cyganek, Djenann Saint-Dic, Arne Zibat, Karl Köhrer, Tassilo E. Wollenweber, Dagmar Wieczorek, Janine Altmüller, Tatiana Borodina, Dilek Kaçar, Göknur Haliloğlu, Yun Li, Christian Thiel, Michael Sacher, Ela W. Knapik, Gökhan Yigit, Bernd Wollnik
Type 2 inflammatory diseases are common in cystic fibrosis (CF) including asthma, sinusitis, and allergic bronchopulmonary aspergillosis. CD4+ T helper 2 (Th2) cells promote these diseases through secretion of IL-4, IL-5, and IL-13. Whether the cystic fibrosis transmembrane conductance regulator (CFTR), the mutated protein in CF, has a direct effect on Th2 development is unknown. Using murine models of CFTR deficiency and human CD4+ T cells, we show CD4+ T cells expressed Cftr transcript and CFTR protein following activation. Loss of T cell CFTR expression increased Th2 cytokine production compared to control cells. Mice with CFTR-deficient T cells developed increased allergic airway disease to Alternaria alternata extract compared to control mice. Culture of CFTR-deficient Th2 cells demonstrated increased IL-4Rα expression and increased sensitivity to IL-4 with greater induction of GATA3 and IL-13 compared to control Th2 cell cultures. The CFTR potentiator ivacaftor reduced allergic inflammation and type 2 cytokine secretion in bronchoalveolar lavage of “humanized” CFTR mice following Alternaria alternata extract challenge and decreased Th2 development in human T cell culture. Together, these data support a direct role of CFTR in regulating T cell sensitivity to IL-4 and demonstrate a potential CFTR-specific therapeutic strategy for Th2 cell-mediated allergic disease.
Mark Rusznak, Christopher M. Thomas, Jian Zhang, Shinji Toki, Weisong Zhou, Masako Abney, Danielle M. Yanda, Allison E. Norlander, Craig A. Hodges, Dawn C. Newcomb, Mark H. Kaplan, R. Stokes Peebles Jr., Daniel P. Cook
Mitogen-activated protein kinase 8 interacting protein 3 (MAPK8IP3/JIP3) is a member of the kinesin family known to play a role in axonal transport of cargo. Mutations in the gene have been linked to severe neurodevelopmental disorders, resulting in developmental delay, intellectual disability, ataxia, tremor, autism, seizures, and visual impairment. A patient who has a missense mutation in the MAPK8IP3 gene (c. 1714 C>T, Arg578Cys) (R578C) manifests dystonia, gross motor delay and developmental delay. Here we show that the mutation is a toxic gain of function mutation which alters the interactome of JIP3, disrupts axonal transport of late endosomes, increases signaling via c-Jun N-terminal kinase (JNK), resulting in apoptosis, and disrupts the dopamine receptor 1 (D1) signaling while not affecting the dopamine receptor 2 (D2) signaling. Further, in the presence of the mutant protein, we show that 80% reduction of mutant JIP3>80% and 60% reduction of wild-type JIP3 by non-allele selective phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) is well tolerated by several types of cells in vitro. Our study identifies several important new roles for JIP3 and provides important insights for therapeutic approaches, including antisense oligonucleotide reduction of JIP3.
Wei Zhang, Swapnil Mittal, Ria Thomas, Anahid Foroughishafiei, Ricardo Nunes Bastos, Wendy K. Chung, Konstantina Skourti-Stathaki, Stanley T. Crooke
Inflammation is a critical pathological process in myocardial infarction. Although immunosuppressive therapies can mitigate inflammatory responses and improve outcomes in myocardial infarction, they also increase the risk of infections. Identifying novel regulators of local cardiac inflammation could provide safer therapeutic targets for myocardial ischemia/reperfusion injury. In this study, we identified a previously unknown micropeptide, which we named Inflammation Associated MicroPeptide (IAMP). IAMP is predominantly expressed in cardiac fibroblasts, and its expression is closely associated with cardiac inflammation. Down-regulation of IAMP promotes, whereas its overexpression prevents, the transformation of cardiac fibroblasts into a more inflammatory phenotype under stressed/stimulated conditions, as evidenced by changes in the expression and secretion of pro-inflammatory cytokines. Consequently, loss of IAMP function leads to uncontrolled inflammation and worsens cardiac injury following ischemia/reperfusion surgery. Mechanistically, IAMP promotes the degradation of HIF-1α by interacting with its stabilizing partner HSP90, and thus suppresses the transcription of pro-inflammatory genes downstream of HIF-1α. This study underscores the significance of fibroblast-mediated inflammation in cardiac ischemia/reperfusion injury and highlights the therapeutic potential of targeting micropeptides for myocardial infarction.
Youchen Yan, Tingting Zhang, Xin He, Tailai Du, Gang Dai, Xingfeng Xu, Zhuohui chen, Jialing Wu, Huimin Zhou, Yazhi Peng, Yan Li, Chen Liu, Xinxue Liao, Yugang Dong, Jing-song Ou, Zhan-Peng Huang
Urinary tract infections (UTIs) are one of the most commonly encountered infections in clinical practice, in which psychological stress is a critical pathological contributor to modulate immune function. However, mechanistic pathways linking stress networks in the brain to bladder infection remain poorly understood. In this study, we discovered that acute stress treatment suppressed bladder inflammation in mice with UTIs, and a significant number of neurons showing overlap between inflammation-associated markers and retrograde labeling were observed in the paraventricular nucleus (PVN) brain region of these mice. Activation of PVN alleviated UPEC-induced bladder inflammatory response. Moreover, blocked hypothalamic-pituitary-adrenal (HPA) axis reversed the anti-inflammatory reflex mediated by acute stress, suggesting that the potential of glucocorticoids levels through the brain-body circuits to ameliorate UTIs. Single cell-RNAseq of bladder immune cells revealed that type 2 innate lymphoid cells (ILC2) expressed abundant levels of glucocorticoid receptor (GR). The activation of PVN effectively inhibited the expression of the proinflammatory cytokine Csf2 by ILC2 through direct regulation of cell-intrinsic glucocorticoids signaling. Ultimately, our study has implications for the positioning of brain-body circuit for UTIs treatment.
Yaxiao Liu, Jinhua Wang, Junyang Lin, Dingqi Sun, Kejia Zhu, Tongxiang Diao, Qiang Fu, Qingyu Ren
No posts were found with this tag.