Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,510 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 229
  • 230
  • 231
  • …
  • 250
  • 251
  • Next →
Transition to 37°C reveals importance of NADPH in mitigating oxidative stress in stored RBCs
Aline Roch, Nicholas J. Magon, Jessica Maire, Cacang Suarna, Anita Ayer, Sophie Waldvogel, Beat. A. Imhof, Mark J. Koury, Roland Stocker, Marc Schapira
Aline Roch, Nicholas J. Magon, Jessica Maire, Cacang Suarna, Anita Ayer, Sophie Waldvogel, Beat. A. Imhof, Mark J. Koury, Roland Stocker, Marc Schapira
View: Text | PDF

Transition to 37°C reveals importance of NADPH in mitigating oxidative stress in stored RBCs

  • Text
  • PDF
Abstract

The red blood cell (RBC) storage lesion is a multi-parametric response that occurs during storage at 4°C, but its impact on transfused patients remains unclear. In studies of the RBC storage lesion, the temperature transition from cold storage to normal body temperature that occurs during transfusion has received limited attention. We hypothesized that multiple deleterious events might occur in this period of increasing temperature. We show dramatic alterations in several properties of therapeutic blood units stored at 4°C after warming them to normal body temperature (37°C), as well as febrile temperature (40°C). In particular, the intracellular content and redox state of nicotinamide adenine dinucleotide phosphate [NADP(H)] were directly affected by post-storage incubation at 37°C, as well as by pro-oxidant storage conditions. Modulation of the NADPH-producing pentose phosphate pathway, but not the prevention of hemoglobin autoxidation by conversion of oxyhemoglobin to carboxyhemoglobin, provided protection against storage-induced alterations in RBCs, demonstrating the central role of NADPH in mitigating increased susceptibility of stored RBCs to oxidative stress. We propose that assessing RBCs oxidative status after restoration of body temperature provides a sensitive tool to detect storage-related alterations, and has the potential to improve the quality of stored RBCs for transfusion.

Authors

Aline Roch, Nicholas J. Magon, Jessica Maire, Cacang Suarna, Anita Ayer, Sophie Waldvogel, Beat. A. Imhof, Mark J. Koury, Roland Stocker, Marc Schapira

×

A20 is an immune tolerance factor that can determine islet transplant outcomes
Nathan W. Zammit, Stacey N. Walters, Karen L. Seeberger, Philip J. O’Connell, Gregory S. Korbutt, Shane T. Grey
Nathan W. Zammit, Stacey N. Walters, Karen L. Seeberger, Philip J. O’Connell, Gregory S. Korbutt, Shane T. Grey
View: Text | PDF

A20 is an immune tolerance factor that can determine islet transplant outcomes

  • Text
  • PDF
Abstract

Islet transplantation can restore lost glycemic control in type 1 diabetes subjects, but is restricted in its clinical application by limiting supplies of islets and the need for heavy immune suppression to prevent rejection. TNFAIP3, encoding the ubiquitin editing enzyme A20, regulates the activation of immune cells by raising NF-κB signalling thresholds. Here we show that increasing A20 expression in allogeneic islet grafts resulted in permanent survival for approximately 45% of recipients, and > 80% survival when combined with subtherapeutic rapamycin. Allograft survival was dependent upon regulatory T cells, was antigen-specific and grafts showed reduced expression of inflammatory factors. Transplantation of islets with A20 containing a loss-of-function variant (I325N) resulted in increased RIPK1 ubiquitination and NF-κB signalling, graft hyper-inflammation and acute allograft rejection. Overexpression of A20 in human islets potently reduced expression of inflammatory mediators with no impact on glucose stimulated insulin secretion. Therapeutic administration of A20 raises inflammatory signalling thresholds to favour immune tolerance and promotes islet allogeneic survival. Clinically this would allow for reduced immunosuppression and support the use of alternate islet sources.

Authors

Nathan W. Zammit, Stacey N. Walters, Karen L. Seeberger, Philip J. O’Connell, Gregory S. Korbutt, Shane T. Grey

×

Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes
Nahal Mansouri, Gareth R. Willis, Angeles Fernandez-Gonzalez, Monica Reis, Sina Nassiri, Alex Mitsialis, Stella Kourembanas
Nahal Mansouri, Gareth R. Willis, Angeles Fernandez-Gonzalez, Monica Reis, Sina Nassiri, Alex Mitsialis, Stella Kourembanas
View: Text | PDF

Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes

  • Text
  • PDF
Abstract

Mesenchymal stromal/stem cell (MSC) therapy has shown promise in experimental models of idiopathic pulmonary fibrosis (IPF). The aim of this study was to test the therapeutic effects of MSC-extracellular vesicles/exosomes (MEx) in a bleomycin-induced pulmonary fibrosis model and investigate putative mechanisms of action. Exosomes were isolated from media conditioned by human bone marrow MSCs. Adult mice (C57BL/6 strain) were challenged with endotracheal instillation of bleomycin and treated with MEx concurrently or for reversal models, at day 7 or 21. Experimental groups were assessed at day 7 and/or at day 14 or 28. Bleomycin-challenged mice presented with severe septal thickening and prominent fibrosis, and this was effectively prevented or reversed by a single dose of MEx. Furthermore, MEx therapy modulated whole lung macrophage phenotype and shifted the proportion of lung ‘proinflammatory’ classical monocytes, non-classical monocytes and alveolar macrophages to favor the monocyte/macrophage profiles of untreated-control mice. A parallel immunomodulatory effect was demonstrated in the bone marrow. Notably, transplantation of MEx-preconditioned bone marrow-derived monocytes alleviated core features of pulmonary fibrosis and lung inflammation. Proteomic analysis further revealed a signature enriched in non-inflammatory monocyte genes following MEx therapy supporting the immuno-regulatory, anti-inflammatory effect of MEx.We conclude that a bolus dose of MEx prevents and reverts core features of bleomycin-induced pulmonary fibrosis, and that the beneficial actions of MEx may be mediated via systemic modulation of monocyte phenotypes.

Authors

Nahal Mansouri, Gareth R. Willis, Angeles Fernandez-Gonzalez, Monica Reis, Sina Nassiri, Alex Mitsialis, Stella Kourembanas

×

Haptoglobin-2 variant increases susceptibility to the acute respiratory distress syndrome during sepsis
V. Eric Kerchberger, Julie A. Bastarache, Ciara M. Shaver, Hiromasa Nagata, J. Brennan McNeil, Stuart R. Landstreet, Nathan D. Putz, Wen-Kuang Yu, Jordan Jesse, Nancy E. Wickersham, Tatiana N. Sidorova, David R. Janz, Chirag R. Parikh, Edward D. Siew, Lorraine B. Ware
V. Eric Kerchberger, Julie A. Bastarache, Ciara M. Shaver, Hiromasa Nagata, J. Brennan McNeil, Stuart R. Landstreet, Nathan D. Putz, Wen-Kuang Yu, Jordan Jesse, Nancy E. Wickersham, Tatiana N. Sidorova, David R. Janz, Chirag R. Parikh, Edward D. Siew, Lorraine B. Ware
View: Text | PDF

Haptoglobin-2 variant increases susceptibility to the acute respiratory distress syndrome during sepsis

  • Text
  • PDF
Abstract

The acute respiratory distress syndrome (ARDS) is an inflammatory lung disorder that frequently complicates critical illness, and most commonly occurs in the setting of sepsis. Although a number of clinical and environmental risk factors for ARDS have been described, not all patients with risk factors develop the syndrome, raising the possibility of genetic underpinnings for ARDS susceptibility. We have previously reported that circulating cell-free hemoglobin (CFH) is elevated during sepsis, and higher levels are associated with worse outcomes. CFH is rapidly scavenged by the plasma protein haptoglobin (Hp). A common HP genetic variant HP2 is unique to humans and represents 60% of the HP allele frequency in populations of European ancestry. The HP2 gene product has reduced ability to inhibit CFH-mediated inflammation and oxidative stress compared to the alternative HP1. We hypothesized that the HP2 variant increases ARDS susceptibility during sepsis when plasma CFH levels are elevated. In a murine model of sepsis with elevated CFH levels, transgenic mice homozygous for Hp2 had increased lung inflammation, pulmonary vascular permeability, lung apoptosis, and mortality compared to mice homozygous for the alternative allele Hp1. We then tested the clinical relevance of our findings in a prospective observational cohort study of 496 septic critically ill adults, and found that the HP2 variant was significantly associated with increased ARDS susceptibility (odds ratio 1.41 per HP2 allele, 95% confidence interval 1.06 – 1.88, P = 0.018) after controlling for clinical risk factors and plasma CFH. This relationship between the HP2 genetic variant and ARDS risk was only seen in patients with elevated plasma CFH levels. These observations identify the HP2 variant as a novel genetic ARDS risk factor during sepsis, and may have important implications in the study and treatment of ARDS.

Authors

V. Eric Kerchberger, Julie A. Bastarache, Ciara M. Shaver, Hiromasa Nagata, J. Brennan McNeil, Stuart R. Landstreet, Nathan D. Putz, Wen-Kuang Yu, Jordan Jesse, Nancy E. Wickersham, Tatiana N. Sidorova, David R. Janz, Chirag R. Parikh, Edward D. Siew, Lorraine B. Ware

×

Effects of rosuvastatin on the immune system in healthy volunteers with normal serum cholesterol
Peer W. F. Karmaus, Min Shi, Shira Perl, Angélique Biancotto, Julián Candia, Foo Cheung, Yuri Kotliarov, Neal Young, Michael B. Fessler
Peer W. F. Karmaus, Min Shi, Shira Perl, Angélique Biancotto, Julián Candia, Foo Cheung, Yuri Kotliarov, Neal Young, Michael B. Fessler
View: Text | PDF

Effects of rosuvastatin on the immune system in healthy volunteers with normal serum cholesterol

  • Text
  • PDF
Abstract

Background: Hydroxymethyl-glutaryl-coenzyme A reductase inhibitors (‘statins’) are prescribed to millions of people. Statins are anti-inflammatory independent of their cholesterol-reducing effects. To date, most reports on the immune effects of statins have assayed a narrow array of variables and have focused on cell lines, rodent models, or patient cohorts. We sought to define the effect of rosuvastatin on the ‘immunome’ of healthy, normocholesterolemic subjects. Methods: Prospective study of rosuvastatin (20 mg/day x 28 days) in 18 statin-naïve adults with low density lipoprotein-cholesterol <130 mg/dL. A panel of >180 immune/biochemical/endocrinologic variables was measured at baseline, and days 14, 28, and 42 (14 days after drug withdrawal). Drug effect was evaluated using linear mixed effects models. Potential interactions between drug and baseline high-sensitivity C-reactive protein (hsCRP) were evaluated. Results: A wide array of immune measures changed (nominal p<0.05) during rosuvastatin treatment, although the changes were modest in magnitude and few met a false discovery rate of 0.05. Among changes noted were a concordant increase in pro-inflammatory cytokines (IFNγ, IL-1β, IL-5, IL-6, TNFα) and peripheral blood neutrophil frequency, and a decline in activated T regulatory cell frequency. Several drug effects were significantly modified by baseline hsCRP, and some did not resolve after drug withdrawal. Among other unexpected rosuvastatin effects were changes in erythrocyte indices, glucose-regulatory hormones, CD8+ T cells, and haptoglobin. Conclusion: Rosuvastatin induces modest changes in immunologic and metabolic measures in normocholesterolemic subjects, with several effects dependent upon baseline CRP. Future, larger studies are warranted to validate these changes and their physiological significance.

Authors

Peer W. F. Karmaus, Min Shi, Shira Perl, Angélique Biancotto, Julián Candia, Foo Cheung, Yuri Kotliarov, Neal Young, Michael B. Fessler

×

Neuronal network dysfunction precedes storage and neurodegeneration in a lysosomal storage disorder
Rebecca C. Ahrens-Nicklas, Luis Tecedor, Arron Hall, Elena Lysenko, Akiva S. Cohen, Beverly L. Davidson, Eric D. Marsh
Rebecca C. Ahrens-Nicklas, Luis Tecedor, Arron Hall, Elena Lysenko, Akiva S. Cohen, Beverly L. Davidson, Eric D. Marsh
View: Text | PDF

Neuronal network dysfunction precedes storage and neurodegeneration in a lysosomal storage disorder

  • Text
  • PDF
Abstract

Accumulation of lysosomal storage material and late-stage neurodegeneration are hallmarks of lysosomal storage disorders (LSDs) affecting the brain. Yet, for most LSDs, including CLN3 disease, the most common form of childhood dementia, it is unclear what mechanisms drive neurologic symptoms. Do deficits arise from loss of function of the mutated protein or toxicity from storage accumulation? Here, using in vitro voltage sensitive dye imaging and in vivo electrophysiology, we find progressive hippocampal dysfunction occurs prior to notable lysosomal storage and neuronal loss in two CLN3 disease mouse models. Pharmacologic reversal of lysosomal storage deposition in young mice does not rescue this circuit dysfunction. Additionally, we find that CLN3 disease mice lose an electrophysiologic marker of new memory encoding – hippocampal sharp wave ripples. This discovery, which is also seen in Alzheimer’s disease, suggests the possibility of a shared electrophysiologic signature of dementia. Overall, our data describes new insights into previously unknown network-level changes occurring in LSDs affecting the central nervous system, and highlight the need for new therapeutic interventions targeting early circuit defects.

Authors

Rebecca C. Ahrens-Nicklas, Luis Tecedor, Arron Hall, Elena Lysenko, Akiva S. Cohen, Beverly L. Davidson, Eric D. Marsh

×

Increased lipogenesis and impaired β-oxidation predict type 2 diabetic kidney disease progression in American Indians
Farsad Afshinnia, Viji Nair, Jiahe Lin, Thekkelnaycke M. Rajendiran, Tanu Soni, Jaeman Byun, Kumar Sharma, Patrice E. Fort, Thomas W. Gardner, Helen C. Looker, Robert G. Nelson, Frank C. Brosius, Eva L. Feldman, George Michailidis, Matthias Kretzler, Subramaniam Pennathur
Farsad Afshinnia, Viji Nair, Jiahe Lin, Thekkelnaycke M. Rajendiran, Tanu Soni, Jaeman Byun, Kumar Sharma, Patrice E. Fort, Thomas W. Gardner, Helen C. Looker, Robert G. Nelson, Frank C. Brosius, Eva L. Feldman, George Michailidis, Matthias Kretzler, Subramaniam Pennathur
View: Text | PDF

Increased lipogenesis and impaired β-oxidation predict type 2 diabetic kidney disease progression in American Indians

  • Text
  • PDF
Abstract

Background: In this study, we aimed to identify the lipidomic predictors of early type-2 diabetic kidney disease (DKD) progression which are currently undefined DKD progression. Methods: This longitudinal study included 92 American Indians with type-2 diabetes. Serum lipids (406 from 18 classes) were quantified using mass spectrometry from baseline samples when iothalamate glomerular filtration rate (GFR) was ≥90 mL/min. Affymetrix GeneChip Array was used to measure renal transcript expression. DKD Progression was defined as ≥40% decline in GFR during follow up. Results: Participants had a mean age of 45±9 years and median urine albumin-creatinine ratio of 43 (interquartile range 11 to 144). The 32 progressors had significantly higher relative abundance of polyunsaturated triacylglycerols (TAG)s and a lower abundance of C16-20 acylcarnitines (AC)s (p<0.001). In a Cox regression model the main effect terms of unsaturated free fatty acids and phosphatidylethanolamines and the interaction terms of C16-20 ACs and short, low-double-bond TAGs by categories of albuminuria independently predicted progression of DKD. Renal expression of acetyl-CoA carboxylase encoding gene (ACACA) correlated with serum diacylglycerols in the glomerular compartment (r=0.36, p=0.006), and with low-double-bond TAGs in the tubulointerstitial compartment (r=0.52, p<0.001). Conclusion: Collectively, the findings reveal a previously unrecognized link between lipid markers of impaired mitochondrial β-oxidation and enhanced lipogenesis, with DKD progression, in individuals with preserved GFR. Renal acetyl-CoA carboxylase activation accompanies these lipidomic changes and suggests that it may be the underlying mechanism linking lipid abnormalities to DKD progression. Funding: R24DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, P30DK020572

Authors

Farsad Afshinnia, Viji Nair, Jiahe Lin, Thekkelnaycke M. Rajendiran, Tanu Soni, Jaeman Byun, Kumar Sharma, Patrice E. Fort, Thomas W. Gardner, Helen C. Looker, Robert G. Nelson, Frank C. Brosius, Eva L. Feldman, George Michailidis, Matthias Kretzler, Subramaniam Pennathur

×

Precocious chondrocyte differentiation disrupts skeletal growth in Kabuki Syndrome mice
Jill A. Fahrner, Wan-Ying Lin, Ryan C. Riddle, Leandros Boukas, Valerie B. DeLeon, Sheetal Chopra, Susan E. Lad, Teresa Romeo Luperchio, Kasper D. Hansen, Hans T. Bjornsson
Jill A. Fahrner, Wan-Ying Lin, Ryan C. Riddle, Leandros Boukas, Valerie B. DeLeon, Sheetal Chopra, Susan E. Lad, Teresa Romeo Luperchio, Kasper D. Hansen, Hans T. Bjornsson
View: Text | PDF

Precocious chondrocyte differentiation disrupts skeletal growth in Kabuki Syndrome mice

  • Text
  • PDF
Abstract

Kabuki syndrome 1 (KS1) is a Mendelian disorder of the epigenetic machinery caused by mutations in the gene encoding KMT2D, which methylates lysine 4 on histone H3 (H3K4). KS1 is characterized by intellectual disability, postnatal growth retardation, and distinct craniofacial dysmorphisms. A mouse model (Kmt2d+/bGeo) exhibits features of the human disorder and has provided insight into other phenotypes; however, the mechanistic basis of skeletal abnormalities and growth retardation remains elusive. Using high-resolution micro-computed tomography we show that Kmt2d+/bGeo mice have shortened long bones and ventral bowing of skulls. In vivo expansion of growth plates within skulls and long bones suggests disrupted endochondral ossification as a common disease mechanism. Stable chondrocyte cell lines harboring inactivating mutations in Kmt2d exhibit precocious differentiation, further supporting this mechanism. A known inducer of chondrogenesis, SOX9, and its targets show markedly increased expression in Kmt2d-/- chondrocytes. By transcriptome profiling, we identify Shox2 as a putative KMT2D target. We propose that decreased KMT2D-mediated H3K4me3 at Shox2 releases Sox9 inhibition and thereby leads to enhanced chondrogenesis, providing a novel and plausible explanation for precocious chondrocyte differentiation. Our findings provide insight into the pathogenesis of growth retardation in KS1 and suggest novel therapeutic approaches for this and related disorders.

Authors

Jill A. Fahrner, Wan-Ying Lin, Ryan C. Riddle, Leandros Boukas, Valerie B. DeLeon, Sheetal Chopra, Susan E. Lad, Teresa Romeo Luperchio, Kasper D. Hansen, Hans T. Bjornsson

×

YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma
Bo Tu, Jun Yao, Sammy Ferri-Borgogno, Jun Zhao, Shujuan Chen, Qiuyun Wang, Liang Yan, Xin Zhou, Cihui Zhu, Seungmin Bang, Qing Chang, Christopher A. Bristow, Ya'an Kang, Hongwu Zheng, Huamin Wang, Jason B. Fleming, Michael Kim, Timothy P. Heffernan, Giulio F. Draetta, Duojia Pan, Anirban Maitra, Wantong Yao, Sonal Gupta, Haoqiang Ying
Bo Tu, Jun Yao, Sammy Ferri-Borgogno, Jun Zhao, Shujuan Chen, Qiuyun Wang, Liang Yan, Xin Zhou, Cihui Zhu, Seungmin Bang, Qing Chang, Christopher A. Bristow, Ya'an Kang, Hongwu Zheng, Huamin Wang, Jason B. Fleming, Michael Kim, Timothy P. Heffernan, Giulio F. Draetta, Duojia Pan, Anirban Maitra, Wantong Yao, Sonal Gupta, Haoqiang Ying
View: Text | PDF

YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma

  • Text
  • PDF
Abstract

Transcriptomic profiling classifies pancreatic ductal adenocarcinoma (PDAC) into several molecular subtypes with distinctive histological and clinical characteristics. However, little is known about the molecular mechanisms that define each subtype and their correlation with clinical outcome. Mutant KRAS is the most prominent driver in PDAC, present in over 90% of tumors, but the dependence of tumors on oncogenic KRAS signaling varies between subtypes. In particular, squamous subtype are relatively independent of oncogenic KRAS signaling and typically display much more aggressive clinical behavior versus progenitor subtype. Here, we identified that YAP1 activation is enriched in the squamous subtype and associated with poor prognosis. Activation of YAP1 in progenitor subtype cancer cells profoundly enhanced malignant phenotypes and transformed progenitor subtype cells into squamous subtype. Conversely, depletion of YAP1 specifically suppressed tumorigenicity of squamous subtype PDAC cells. Mechanistically, we uncovered a significant positive correlation between WNT5A expression and the YAP1 activity in human PDAC, and demonstrated that WNT5A overexpression led to YAP1 activation and recapitulated YAP1-dependent but Kras-independent phenotype of tumor progression and maintenance. Thus, our study identifies YAP1 oncogene as a major driver of squamous subtype PDAC and uncovers the role of WNT5A in driving PDAC malignancy through activation of the YAP pathway.

Authors

Bo Tu, Jun Yao, Sammy Ferri-Borgogno, Jun Zhao, Shujuan Chen, Qiuyun Wang, Liang Yan, Xin Zhou, Cihui Zhu, Seungmin Bang, Qing Chang, Christopher A. Bristow, Ya'an Kang, Hongwu Zheng, Huamin Wang, Jason B. Fleming, Michael Kim, Timothy P. Heffernan, Giulio F. Draetta, Duojia Pan, Anirban Maitra, Wantong Yao, Sonal Gupta, Haoqiang Ying

×

Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection
Kirsten A. Kulcsar, Christopher M. Coleman, Sarah E. Beck, Matthew B. Frieman
Kirsten A. Kulcsar, Christopher M. Coleman, Sarah E. Beck, Matthew B. Frieman
View: Text | PDF

Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection

  • Text
  • PDF
Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 in the Kingdom of Saudi Arabia and has caused over 2400 cases and more than 800 deaths. Epidemiological studies identified diabetes as the primary comorbidity associated with severe and/or lethal MERS-CoV infection. Understanding how diabetes affects MERS is important due to the global burden of diabetes and pandemic potential of MERS-CoV. We used a model in which mice were made susceptible to MERS-CoV by expressing human DPP4 and type 2 diabetes was induced by administering a high fat diet. Upon infection with MERS-CoV, diabetic mice had a prolonged phase of severe disease and delayed recovery which was independent of virus titers. Histological analysis revealed that diabetic mice had delayed inflammation which was then prolonged through 21 dpi. Diabetic mice had fewer inflammatory monocyte/macrophages and CD4+ T cells which correlated with lower levels of Ccl2 and Cxcl10 expression. Diabetic mice also had lower levels of Tnfa, Il6, Il12b, and Arg1 expression and higher levels of Il17a expression. These data suggest that the increased disease severity observed in individuals with MERS and comorbid type 2 diabetes is likely due to a dysregulated immune response which results in more severe and prolonged lung pathology.

Authors

Kirsten A. Kulcsar, Christopher M. Coleman, Sarah E. Beck, Matthew B. Frieman

×
  • ← Previous
  • 1
  • 2
  • …
  • 229
  • 230
  • 231
  • …
  • 250
  • 251
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts